<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The zebrafish reference genome sequence and its relationship to the human genome

The zebrafish reference genome sequence and its relationship to the human genome
Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
- Max Planck Institute of Neurobiology Germany
- Brigham and Women's Faulkner Hospital United States
- King's College London, University of London
- French National Centre for Scientific Research France
- King's College London United Kingdom
Male, 570, Evolution, Chromosomes, 576, Evolution, Molecular, Medicine and Health Sciences, Animals, Humans, Conserved Sequence, Zebrafish, info:eu-repo/classification/ddc/570, Genome, biology, Genome, Human, Life Sciences, Molecular, Molecular Sequence Annotation, Genomics, Reference Standards, Sex Determination Processes, Zebrafish Proteins, Life sciences, Meiosis, Genes, Female, ddc:570, Pseudogenes, Human
Male, 570, Evolution, Chromosomes, 576, Evolution, Molecular, Medicine and Health Sciences, Animals, Humans, Conserved Sequence, Zebrafish, info:eu-repo/classification/ddc/570, Genome, biology, Genome, Human, Life Sciences, Molecular, Molecular Sequence Annotation, Genomics, Reference Standards, Sex Determination Processes, Zebrafish Proteins, Life sciences, Meiosis, Genes, Female, ddc:570, Pseudogenes, Human
398 Research products, page 1 of 40
- 2017IsRelatedTo
- IsSupplementTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- IsSupplementTo
- IsSupplementTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- IsSupplementTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4K popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.01% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 0.1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.01%