Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Egyptian Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Egyptian Journal of Medical Human Genetics
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Ligand-based drug design and molecular docking simulation studies of some novel anticancer compounds on MALME-3M melanoma cell line

Authors: Gideon Adamu Shallangwa; Abdullahi Bello Umar; Adamu Uzairu; Sani Uba;

Ligand-based drug design and molecular docking simulation studies of some novel anticancer compounds on MALME-3M melanoma cell line

Abstract

Abstract Background Melanoma cancer causes serious health problem worldwide because of its rapid invasion to other organs and lack of satisfactory chemotherapy. The pGI50 anticancer activity values of 70 compounds from the NCI (National Cancer Institute) on MALME-3M cell line was modeled to describe the quantitative structure-activity relationships (QSARs) of the compounds, and some selected compounds were docked. Results The generated QSAR model was found to be statistically significant based on the obtained values of the validation keys such as R2 (0.885), $$ {R}_{\mathrm{adjusted}}^2 $$ R adjusted 2 (0.868), Q2cv (0.842), and $$ {R}_{pred}^2 $$ R pred 2 (0.738) required to evaluate the strength and robustness of QSAR model. Compound 39 was selected as a template due to its good pGI50 (9.205) and was modified to design new potent compounds. The predicted pGI50 activity of the designed compounds by the built model was N1 (9.836), N2 (12.876), N3 (10.901), and N4 (11.263) respectively. These proposed compounds were docked with V600E-BRAF receptor and the result shows that, N1, N2, N3, and N4 with free binding energy (FBE) of − 11.7 kcal mol−1, − 12.8 kcal mol−1, − 12.7 kcal mol−1, and − 12.9 kcal mol−1 respectively were better than the parent structure of the template (compound 39, FBE = − 7.0 kcal mol−1) and the standard V600E-BRAF inhibitor (Vemurafenib, FBE = − 11.3 kcal mol−1). Additionally, these compounds passed the drug-likeness criteria successfully to be orally bioavailable. Conclusion The proposed compounds were considered optimal as their performances are comparable to vemurafenib and possessed enhanced physicochemical properties. Thus recommends further research such as synthesis, in vivo, and ex-vivo evaluation.

Related Organizations
Keywords

Medicine (General), QSAR, Binding energy, QH426-470, R5-920, Pi–pi interaction, V600E-BRAF, MALME-3M cell line, Genetics, Melanoma

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
gold