Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2007 . Peer-reviewed
Data sources: Crossref
Development
Article . 2007
versions View all 2 versions

Semaphorin signaling facilitates cleft formation in the developing salivary gland

Authors: Hsiu Ru Huang; Hwai-Jong Cheng; Pei-Hsin Huang; Ling Chung; Su-Ming Hsu; Tsung-Lin Yang;

Semaphorin signaling facilitates cleft formation in the developing salivary gland

Abstract

Semaphorin signaling plays integral roles in multiple developmental processes. Branching morphogenesis is one such role that has not been thoroughly explored. Here, we show in mice that functional blockage of neuropilin 1 (Npn1) inhibits cleft formation in the developing submandibular gland (SMG) cultured ex vivo. This Npn1-dependent morphogenesis is mediated by Sema3A and Sema3C in an additive manner, and can be abolished by decreasing the expression of plexin A2 or plexin D1. VEGF, another known Npn1 ligand, has no apparent effects on SMG development. FGF signaling, which also mediates SMG branching morphogenesis, acts in parallel with semaphorin signaling. Finally,in contrast to the effect of FGF signaling, we find that semaphorins do not stimulate the proliferation of SMG epithelial cells. Instead, the semaphorin signals act locally on the epithelial cells to facilitate SMG cleft formation.

Keywords

Vascular Endothelial Growth Factor A, Membrane Glycoproteins, Submandibular Gland, Intracellular Signaling Peptides and Proteins, Gene Expression Regulation, Developmental, Embryonic Structures, Epithelial Cells, Nerve Tissue Proteins, Receptors, Cell Surface, Semaphorin-3A, Semaphorins, Neuropilin-1, Salivary Glands, Fibroblast Growth Factors, Mice, Animals, Cells, Cultured, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Top 10%
Top 10%
bronze