Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/srep13...
Article . 2015 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.nature.com/article...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2015
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

SENP2 regulates MMP13 expression in a bladder cancer cell line through SUMOylation of TBL1/TBLR1

Authors: Jun Wang; Hua Gong; Le Tao; Erdun Bao; Mingyue Tan; Dongliang Xu; Zhihong Liu; +1 Authors

SENP2 regulates MMP13 expression in a bladder cancer cell line through SUMOylation of TBL1/TBLR1

Abstract

AbstractBladder cancer (BC) is the most popular malignant urinary cancer in China. BC has the highest incidence and mortality among all genitourinary system tumors. Although the early-stage BC could be treated with advanced electron flexible systourethroscope, early metastasis of the BC occur frequently and often results in poor prognosis. Recently, we reported that small ubiquitin related modifier (SUMO)-specific protease 2 (SENP2) was downregulated in BC specimen. SENP2 appeared to inhibit migration and invasion of bladder cancer cells in vitro, through suppressing MMP13 in BC cells. However, the exact underlying mechanisms remain unknown. Here, we reported that SENP2 inhibited nuclear translocation of β-catenin, which targeted the promotor of MMP13 to activate MMP13 to enhance BC cell metastasis. WNT ligands induced TBL1/TBLR1 SUMOylation to form complexes with β-catenin to facilitate β-catenin nuclear translocation, which could be efficiently inhibited through suppression of SUMOylation of TBL1/TBLR1. Together, our data suggest that SENP2 inhibits MMP13 expression in BC cells through de-SUMOylation of TBL1/TBLR1, which inhibits nuclear translocation of β-catenin. Thus, SENP2 may be a promising therapeutic target for BC.

Related Organizations
Keywords

Nuclear Proteins, Receptors, Cytoplasmic and Nuclear, Sumoylation, Models, Biological, Article, Wnt-5a Protein, Gene Expression Regulation, Neoplastic, Repressor Proteins, Wnt Proteins, Cysteine Endopeptidases, Protein Transport, Urinary Bladder Neoplasms, Cell Line, Tumor, Proto-Oncogene Proteins, Matrix Metalloproteinase 13, Humans, Transducin, Promoter Regions, Genetic, beta Catenin, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
Green
gold