Toll-Like Receptor 2-Dependent Extracellular Signal-Regulated Kinase Signaling in Mycobacterium tuberculosis-Infected Macrophages Drives Anti-Inflammatory Responses and Inhibits Th1 Polarization of Responding T Cells
Toll-Like Receptor 2-Dependent Extracellular Signal-Regulated Kinase Signaling in Mycobacterium tuberculosis-Infected Macrophages Drives Anti-Inflammatory Responses and Inhibits Th1 Polarization of Responding T Cells
ABSTRACTMycobacterium tuberculosissurvives within macrophages and employs immune evasion mechanisms to persist in the host. Protective T helper type 1 (Th1) responses are induced, and the immune response in most individuals is sufficient to restrictM. tuberculosisto latent infection, but most infections are not completely resolved. As T cells and macrophages respond, a balance is established between protective Th1-associated and other proinflammatory cytokines, such as interleukin-12 (IL-12), interferon gamma (IFN-γ), and tumor necrosis factor alpha, and anti-inflammatory cytokines, such as IL-10. The mechanisms by whichM. tuberculosismodulates host responses to promote its survival remain unclear. In these studies, we demonstrate thatM. tuberculosisinduction of IL-10, suppression of IL-12, and inhibition of class II major histocompatibility complex (MHC-II) molecules in infected macrophages are all driven by Toll-like receptor 2 (TLR2)-dependent activation of the extracellular signal-regulated kinases (ERK). Elimination of ERK signaling downstream of TLR2 by pharmacologic inhibition with U0126 or genetic deletion ofTpl2blocks IL-10 secretion and enhances IL-12 p70 secretion. We demonstrate thatM. tuberculosisregulation of these pathways in macrophages affects T cell responses to infected macrophages. Thus, genetic blockade of the ERK pathway inTpl2−/−macrophages enhances Th1 polarization and IFN-γ production by antigen-specific CD4+T cells responding toM. tuberculosisinfection. These data indicate thatM. tuberculosisand its potent TLR2 ligands activate ERK signaling in macrophages to promote anti-inflammatory macrophage responses and blunt Th1 responses against the pathogen.
- University Hospitals of Cleveland United States
- Molecular Research Institute United States
- Johns Hopkins University Center for AIDS Research United States
- Johns Hopkins University United States
- Case Western Reserve University United States
Inflammation, Mice, Knockout, Macrophages, Genes, MHC Class II, Phosphotransferases, Mice, Transgenic, Mycobacterium tuberculosis, Th1 Cells, Interleukin-12, Toll-Like Receptor 2, Interleukin-10, Mice, Inbred C57BL, Mice, Gene Expression Regulation, Myeloid Differentiation Factor 88, Animals, Extracellular Signal-Regulated MAP Kinases, Cells, Cultured, Signal Transduction
Inflammation, Mice, Knockout, Macrophages, Genes, MHC Class II, Phosphotransferases, Mice, Transgenic, Mycobacterium tuberculosis, Th1 Cells, Interleukin-12, Toll-Like Receptor 2, Interleukin-10, Mice, Inbred C57BL, Mice, Gene Expression Regulation, Myeloid Differentiation Factor 88, Animals, Extracellular Signal-Regulated MAP Kinases, Cells, Cultured, Signal Transduction
18 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).78 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
