Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plant and Cell Physi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant and Cell Physiology
Article . 2001 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

A Comprehensive Expression Analysis of all Members of a Gene Family Encoding Cell-Wall Enzymes Allowed us to Predict cis-Regulatory Regions Involved in Cell-Wall Construction in Specific Organs of Arabidopsis

Authors: R, Yokoyama; K, Nishitani;

A Comprehensive Expression Analysis of all Members of a Gene Family Encoding Cell-Wall Enzymes Allowed us to Predict cis-Regulatory Regions Involved in Cell-Wall Construction in Specific Organs of Arabidopsis

Abstract

The Arabidopsis thaliana genome sequencing project has revealed that multigene families, such as those generated by genome duplications, are more abundant among plant genomes than among animal genomes. To gain insight into the evolutionary implications of the multigene families in higher plants, we examined the XTH gene family, a group of genes encoding xyloglucan endotransglucosylase/hydrolase, which are responsible for cell-wall construction in plants. Expression analysis of all members (33 genes) of this family, using quantitative real-time RT-PCR, revealed that most members exhibit distinct expression profiles in terms of tissue specificity and responses to hormonal signals, with some members exhibiting similar expression patterns. By comparing the flanking sequences of individual genes, we identified four sets of large-segment duplications and two sets of solitary gene duplications. In each set of gene duplicates, long nucleotide sequences, ranging from one to two hundred base pairs, are conserved. Furthermore, gene duplicates exhibit similar organ-specific expression profiles. These facts allowed us to predict putative cis-regulatory regions, particularly those responsible for cell-wall construction, and hence for morphogenesis, that are specific for certain organs or tissues in plants.

Related Organizations
Keywords

Base Sequence, DNA, Plant, Cell Wall, Gene Expression Regulation, Plant, Multigene Family, Sequence Homology, Nucleic Acid, Molecular Sequence Data, Arabidopsis, Regulatory Sequences, Nucleic Acid, Gene Expression Regulation, Enzymologic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    265
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
265
Top 1%
Top 1%
Top 10%
bronze