A mutually induced conformational fit underlies Ca2+-directed interactions between calmodulin and the proximal C terminus of KCNQ4 K+ channels
A mutually induced conformational fit underlies Ca2+-directed interactions between calmodulin and the proximal C terminus of KCNQ4 K+ channels
Calmodulin (CaM) conveys intracellular Ca2+ signals to KCNQ (Kv7, "M-type") K+ channels and many other ion channels. Whether this "calmodulation" involves a dramatic structural rearrangement or only slight perturbations of the CaM/KCNQ complex is as yet unclear. A consensus structural model of conformational shifts occurring between low nanomolar and physiologically high intracellular [Ca2+] is still under debate. Here, we used various techniques of biophysical chemical analyses to investigate the interactions between CaM and synthetic peptides corresponding to the A and B domains of the KCNQ4 subtype. We found that in the absence of CaM, the peptides are disordered, whereas Ca2+/CaM imposed helical structure on both KCNQ A and B domains. Isothermal titration calorimetry revealed that Ca2+/CaM has higher affinity for the B domain than for the A domain of KCNQ2-4 and much higher affinity for the B domain when prebound with the A domain. X-ray crystallography confirmed that these discrete peptides spontaneously form a complex with Ca2+/CaM, similar to previous reports of CaM binding KCNQ-AB domains that are linked together. Microscale thermophoresis and heteronuclear single-quantum coherence NMR spectroscopy indicated the C-lobe of Ca2+-free CaM to interact with the KCNQ4 B domain (Kd ∼10-20 μm), with increasing Ca2+ molar ratios shifting the CaM-B domain interactions via only the CaM C-lobe to also include the N-lobe. Our findings suggest that in response to increased Ca2+, CaM undergoes lobe switching that imposes a dramatic mutually induced conformational fit to both the proximal C terminus of KCNQ4 channels and CaM, likely underlying Ca2+-dependent regulation of KCNQ gating.
- The University of Texas at Austin United States
- The University of Texas Health Science Center at San Antonio United States
KCNQ Potassium Channels, CHO Cells, Crystallography, X-Ray, Protein Structure, Secondary, Cricetulus, Calmodulin, Protein Domains, Animals, Humans, Calcium, Ion Channel Gating
KCNQ Potassium Channels, CHO Cells, Crystallography, X-Ray, Protein Structure, Secondary, Cricetulus, Calmodulin, Protein Domains, Animals, Humans, Calcium, Ion Channel Gating
11 Research products, page 1 of 2
- 2017IsRelatedTo
- 1996IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2018IsSupplementTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
