Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Leukemiaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Leukemia
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Leukemia
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Leukemia
Article . 2004
versions View all 3 versions

Modulation of cell cycle by graded expression of MLL-AF4 fusion oncoprotein

Authors: A Serna; A Serna; Corrado Caslini; Martino Introna; Andrea Biondi; Vincenzo Rossi;

Modulation of cell cycle by graded expression of MLL-AF4 fusion oncoprotein

Abstract

Acute lymphoblastic leukemia (ALLs) expressing MLL-AF4, the fusion product of t(4;11)(q21;q23), show marked leucocytosis and extramedullary disease in multiple organs, respond poorly to chemotherapy and have poor prognosis. In vitro, leukemic cells with the t(4;11) show resistance to serum deprivation-induced or interferon gamma-regulated CD95-mediated apoptosis. In addition, t(4;11) cells have prolonged doubling time and lower percentage of cells in cycle compared to non-t(4;11) B lineage cell lines. In this study, we examine the time- and level-dependent effects of MLL-AF4 conditional expression on cell cycle and differentiation of myelomonocytic leukemia cell line U937. By varying the concentration of tetracycline in growth media, we found that increasing levels of MLL-AF4 expression result in a progressive decrease in growth rate and fraction of S phase cells, paralleled by an increase in percentage of cells expressing CD11b. Our results demonstrate a dosage-dependent effect of MLL-AF4 fusion oncoprotein on cell cycle progression, with increasing expression levels resulting in the accumulation in G1, prolonged doubling time, both findings that might be responsible for the increased resistance to etoposide-mediated cytotoxicity. We propose the cell cycle control exerted by MLL-AF4 may be responsible of resistance to cell-death promoting stimuli in leukemia carrying the t(4;11) translocation.

Keywords

Oncogene Proteins, Fusion, MLL-AF4; cell cycle; differentiation, Gene Expression Regulation, Leukemic, Gene Dosage, Cell Differentiation, U937 Cells, Precursor Cell Lymphoblastic Leukemia-Lymphoma, Tetracyclines, Humans, Cell Division, Myeloid-Lymphoid Leukemia Protein

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Average
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research