Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Sciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Science
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Phosphate transporter OsPht1;8 in rice plays an important role in phosphorus redistribution from source to sink organs and allocation between embryo and endosperm of seeds

Authors: Yiting Li; Jun Zhang; Xiao Zhang; Hongmei Fan; Mian Gu; Hongye Qu; Guohua Xu;

Phosphate transporter OsPht1;8 in rice plays an important role in phosphorus redistribution from source to sink organs and allocation between embryo and endosperm of seeds

Abstract

Phosphorus (P) redistribution from source to sink organs within plant is required for optimizing growth and development under P deficient condition. In this study, we knocked down expression of a phosphate transporter gene OsPht1;8 (OsPT8) selectively in shoot and/or in seed endosperm by RNA-interference using RISBZ1 and GluB-1 promoter (designate these transgenic lines as SSRi and EnSRi), respectively, to characterize the role of OsPT8 in P redistribution of rice. In comparison to wild type (WT) and EnSRi lines, SSRi lines under P deficient condition accumulated more P in old blades and less P in young blades, corresponding to attenuated and enriched transcripts of P-responsive genes in old and young blades, respectively. The ratio of total P in young blades to that in old blades decreased from 2.6 for WT to 0.9-1.2 for SSRi lines. During the grain-filling stage, relative to WT, SSRi lines showed the substantial decrease of total P content in both endosperm and embryo, while EnSRi lines showed 40-50% decrease of total P content in embryo but similar P content in endosperm. Taken together, our results demonstrate that OsPT8 plays a critical role in redistribution of P from source to sink organs and P homeostasis in seeds of rice.

Related Organizations
Keywords

Gene Knockdown Techniques, Seeds, Phosphate Transport Proteins, Oryza, Phosphorus, RNA Interference, Plants, Genetically Modified, Plant Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 1%
Top 10%
Top 10%