Duplicate and diverge: the evolution of plant genome microstructure
pmid: 11173118
Duplicate and diverge: the evolution of plant genome microstructure
The use of positional approaches for the isolation of genes from most crop species is difficult due to the large size of their genomes. If the order of genes in segments of the genomes is similar in different plants, it might be feasible to use smaller genomes as templates upon which to base strategies for the positional cloning of genes from other species. Comparative genetic mapping, using markers such as restriction-fragment length polymorphisms, has revealed extensive conservation of long-range genome organization (macrostructure) between related species. But is the organization of the tens or hundreds of genes between the genetic markers also conserved? Recent results suggest that the fine-scale structure (microstructure) of plant genomes is more dynamic than previously assumed from investigations of the macrostructure.
- John Innes Centre United Kingdom
- Norwich Research Park United Kingdom
Evolution, Molecular, Polyploidy, Gene Duplication, Arabidopsis, Genome, Plant
Evolution, Molecular, Polyploidy, Gene Duplication, Arabidopsis, Genome, Plant
24 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).48 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
