<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Unfolding a transmembrane helix dimer: A FRET study in mixed micelles

pmid: 20074546
Unfolding a transmembrane helix dimer: A FRET study in mixed micelles
The exact nature of membrane protein folding and assembly is not understood in detail yet. Addition of SDS to a membrane protein dissolved in mild, non-polar detergent results in formation of mixed micelles and in subsequent denaturation of higher ordered membrane protein structures. The exact nature of this denaturation event is, however, enigmatic, and separation of an individual helix pair in mixed micelles has also not been reported yet. Here we followed unfolding of the human glycophorin A transmembrane helix dimer in mixed micelles by fluorescence spectroscopy. Energy transfer between differently labelled glycophorin A transmembrane helices decreased with increasing SDS mole fractions albeit without modifying the helicity of the peptides. The energetics and kinetics of the dimer dissociation in mixed micelles is analyzed and discussed, and the experimental data demonstrate that mixed micelles can be used as a general method to investigate unfolding of alpha-helical membrane proteins.
- University of Freiburg Germany
- Johannes Gutenberg University of Mainz Germany
Kinetics, Surface-Active Agents, Fluorescence Resonance Energy Transfer, Humans, Sodium Dodecyl Sulfate, Glycophorins, Protein Multimerization, Micelles, Protein Structure, Secondary, Protein Structure, Tertiary
Kinetics, Surface-Active Agents, Fluorescence Resonance Energy Transfer, Humans, Sodium Dodecyl Sulfate, Glycophorins, Protein Multimerization, Micelles, Protein Structure, Secondary, Protein Structure, Tertiary
36 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%