Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Genetic evidence that Celsr3 and Celsr2 , together with Fzd3 , regulate forebrain wiring in a Vangl -independent manner

Authors: Yibo, Qu; Yuhua, Huang; Jia, Feng; Gonzalo, Alvarez-Bolado; Elizabeth A, Grove; Yingzi, Yang; Fadel, Tissir; +2 Authors

Genetic evidence that Celsr3 and Celsr2 , together with Fzd3 , regulate forebrain wiring in a Vangl -independent manner

Abstract

Significance Connections are crucial to brain function and a variety of molecular systems direct axonal growth during development and regeneration. An important system involves Celsr2, Celsr3, and Fzd3, membrane proteins that also regulate epithelial planar cell polarity (PCP). Here, we show genetically that Celsr2 and Celsr3 guide axons redundantly, in collaboration with Fzd3 in the same cell populations. However, unlike in epithelial PCP, their action is Vangl1 and Vangl2 independent. Furthermore, expression of Celsr2-3 and Fzd3 in thalamocortical axons and cortical cells is required for the fine mapping of cortical areas. Our findings that Celsr2, Celsr3, and Fzd3 regulate axonal guidance using mechanisms different than epithelial PCP have implications for brain wiring during normal development and regeneration.

Keywords

Cerebral Cortex, Integrases, Membrane Proteins, Nerve Tissue Proteins, Receptors, Cell Surface, Cadherins, Axons, Frizzled Receptors, Mice, Phenotype, Prosencephalon, Thalamus, Mutation, Animals, Gene Silencing, Nerve Net, Carrier Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 10%
Top 10%
Top 10%
bronze