RNA binding and intramolecular interactions modulate the regulation of gene expression by nuclear factor 110
RNA binding and intramolecular interactions modulate the regulation of gene expression by nuclear factor 110
Nuclear factor 110 (NF110) belongs to the nuclear factor 90 (NF90) family of double-stranded RNA (dsRNA) binding proteins that regulate gene expression at the transcriptional level in vertebrates. The proteins are identical at their N terminus, which functions as a negative regulatory region, but have distinct C termini as a result of alternate splicing. Maximal transcriptional activity of NF110 requires its C-terminal domain and a central domain that contains a nuclear localization signal and two dsRNA-binding motifs (dsRBMs). We find that dsRNA binding is reduced by RGG and GQSY motifs present in the C-terminal region. To directly evaluate the role of RNA binding in transactivation, we conducted site-directed mutagenesis to substitute conserved residues in one or both of the dsRBMs. The mutations reduced the ability of NF110 to stimulate gene expression to an extent that paralleled the mutants’ reduced ability to bind dsRNA. Full activity was restored when the dsRBM-containing region of NF110 was replaced with the RNA-binding region of the protein kinase PKR. Finally, NF110-mediated transactivation was inhibited by cotransfection of a plasmid encoding an artificial highly structured RNA. These data suggest that NF110 and its homologs are regulated by cis-acting domains present in some of the protein isoforms, and via interactions with RNAs that bind to their dsRBMs. We propose a model in which structured RNAs regulate gene expression by modulating transcription through interactions with members of the NF90 protein family.
- University of Medicine and Dentistry of New Jersey United States
- Rutgers New Jersey Medical School United States
Binding Sites, Base Sequence, NFATC Transcription Factors, Nuclear Proteins, RNA-Binding Proteins, Models, Biological, Protein Structure, Tertiary, DNA-Binding Proteins, Gene Expression Regulation, Genes, Reporter, Humans, Nuclear Factor 90 Proteins, HeLa Cells, RNA, Double-Stranded, Transcription Factors
Binding Sites, Base Sequence, NFATC Transcription Factors, Nuclear Proteins, RNA-Binding Proteins, Models, Biological, Protein Structure, Tertiary, DNA-Binding Proteins, Gene Expression Regulation, Genes, Reporter, Humans, Nuclear Factor 90 Proteins, HeLa Cells, RNA, Double-Stranded, Transcription Factors
7 Research products, page 1 of 1
- 2021IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2008IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).40 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
