Amino-terminal Dimerization, NRDP1-Rhodanese Interaction, and Inhibited Catalytic Domain Conformation of the Ubiquitin-specific Protease 8 (USP8)
pmid: 17035239
Amino-terminal Dimerization, NRDP1-Rhodanese Interaction, and Inhibited Catalytic Domain Conformation of the Ubiquitin-specific Protease 8 (USP8)
Ubiquitin-specific protease 8 (USP8) hydrolyzes mono and polyubiquitylated targets such as epidermal growth factor receptors and is involved in clathrin-mediated internalization. In 1182 residues, USP8 contains multiple domains, including coiled-coil, rhodanese, and catalytic domains. We report the first high-resolution crystal structures of these domains and discuss their implications for USP8 function. The amino-terminal domain is a homodimer with a novel fold. It is composed of two five-helix bundles, where the first helices are swapped, and carboxyl-terminal helices are extended in an antiparallel fashion. The structure of the rhodanese domain, determined in complex with the E3 ligase NRDP1, reveals the canonical rhodanese fold but with a distorted primordial active site. The USP8 recognition domain of NRDP1 has a novel protein fold that interacts with a conserved peptide loop of the rhodanese domain. A consensus sequence of this loop is found in other NRDP1 targets, suggesting a common mode of interaction. The structure of the carboxyl-terminal catalytic domain of USP8 exhibits the conserved tripartite architecture but shows unique traits. Notably, the active site, including the ubiquitin binding pocket, is in a closed conformation, incompatible with substrate binding. The presence of a zinc ribbon subdomain near the ubiquitin binding site further suggests a polyubiquitin-specific binding site and a mechanism for substrate induced conformational changes.
- University of Toronto Canada
- Structural Genomics Consortium Canada
Models, Molecular, Endosomal Sorting Complexes Required for Transport, Ubiquitin-Protein Ligases, Static Electricity, In Vitro Techniques, Crystallography, X-Ray, Recombinant Proteins, Thiosulfate Sulfurtransferase, Protein Structure, Tertiary, Kinetics, Catalytic Domain, Multiprotein Complexes, Endopeptidases, Humans, Protein Structure, Quaternary, Dimerization, Ubiquitin Thiolesterase
Models, Molecular, Endosomal Sorting Complexes Required for Transport, Ubiquitin-Protein Ligases, Static Electricity, In Vitro Techniques, Crystallography, X-Ray, Recombinant Proteins, Thiosulfate Sulfurtransferase, Protein Structure, Tertiary, Kinetics, Catalytic Domain, Multiprotein Complexes, Endopeptidases, Humans, Protein Structure, Quaternary, Dimerization, Ubiquitin Thiolesterase
19 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2010IsRelatedTo
- 2005IsRelatedTo
- 2005IsSupplementTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).135 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
