Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Investigative Ophtha...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Investigative Ophthalmology & Visual Science
Article . 2015 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

A Murine Model for Metastatic Conjunctival Melanoma

Authors: Waard, N.E. de; Cao, J.F.; McGuire, S.P.; Kolovou, P.E.; Jordanova, E.S.; Ksander, B.R.; Jager, M.J.;

A Murine Model for Metastatic Conjunctival Melanoma

Abstract

Conjunctival melanoma (CM) is an ocular malignancy with a high rate of local recurrences after treatment, and can give rise to deadly metastases. The establishment of a murine model will further our understanding of this disease and allow in vivo testing of new therapies. We therefore analyzed the ability of three CM cell lines to grow orthotopically and spread to distant sites. Furthermore, we determined the characteristics of the xenografts and their metastases.Orthotopic xenografts of human CM were established by subconjunctival injection of three different CM cell lines into NOD/SCID IL2 rγnull mice. Single-cell suspensions were generated from the primary tumors and placed subconjunctivally in another set of mice, which were then screened for metastases. The presence of melanoma markers was determined on the cell lines and during tumor development.Subconjunctival injection of cultured CM cells into immunodeficient mice led to excellent subconjunctival tumor growth in all inoculated mice (n = 101) within 2 weeks; however, no metastases were found at the time of autopsy. Serial in vivo passage of primary tumor cells resulted in metastatic tumors in the draining lymph nodes (n = 21). The CM cell lines, as well as the tumor xenografts and their metastases, were positive for the melanoma markers HMB-45, S100B, and MART-1. Two cell lines and their corresponding xenografts carried a BRAF mutation, the third showed an NRAS mutation.We established a murine model for CM that shows excellent formation of metastases in a pattern that accurately resembles metastatic human CM following in vivo passaging.

Country
Netherlands
Keywords

Proto-Oncogene Proteins B-raf, conjunctiva, mouse model, DNA Mutational Analysis, Membrane Proteins, Conjunctival Neoplasms, DNA, Neoplasm, Mice, SCID, Neoplasms, Experimental, Immunohistochemistry, metastatic, GTP Phosphohydrolases, Mice, Cell Line, Tumor, Mutation, melanoma, Animals, Humans, Melanoma

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
gold