Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Medicinearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Medicine
Article . 2014 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Medicine
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Correlation between PDZK1, Cdc37, Akt and Breast Cancer Malignancy: The Role of PDZK1 in Cell Growth through Akt Stabilization by Increasing and Interacting with Cdc37

Authors: Hogyoung, Kim; Zakaria Y, Abd Elmageed; Christian, Davis; Ali H, El-Bahrawy; Amarjit S, Naura; Ibrahim, Ekaidi; Asim B, Abdel-Mageed; +1 Authors

Correlation between PDZK1, Cdc37, Akt and Breast Cancer Malignancy: The Role of PDZK1 in Cell Growth through Akt Stabilization by Increasing and Interacting with Cdc37

Abstract

PDZ domain containing 1 (PDZK1) is a scaffold protein that plays a role in the fate of several proteins. Estrogen can induce PDZK1 gene expression; however, our recent report showed that PDZK1 expression in the breast cancer cell line MCF-7 is indirect and involves insulin-like growth factor (IGF)-1 receptor function. Such a relationship was established in cell culture systems and human breast cancer tissues. Here we show that overexpression of PDZK1 promoted an increase in cyclin D1 and enhanced anchorage-independent growth of MCF-7 cells in the absence of 17β-estradiol, suggesting that PDZK1 harbors oncogenic activity. Indeed, PDKZ1 overexpression enhanced epidermal growth factor receptor (EGFR)-stimulated MEK/ERK1/2 signaling and IGF-induced Akt phosphorylation. PDZK1 appeared to play this role, in part, by stabilizing the integrity of the growth promoting factors Akt, human epidermal growth factor receptor 2 (Her2/Neu) and EGFR. Increased Akt levels occurred via a decrease in the ubiquitination of the kinase. PDZK1 overexpression was associated with resistance to paclitaxel/5-fluorouracil/etoposide only at low concentrations. Although the increased stability of Akt was sensitive to heat shock protein 90 (HSP90) inhibition, increased levels of the cochaperone cell division cycle 37 (Cdc37), as well as its ability to bind PDZK1, appear to play a larger role in kinase stability. Using human tissue microarrays, we show strong positive correlation between PDZK1, Akt and Cdc37 protein levels, and all correlated with human breast malignancy. There were no positive correlations between PDZK1 and Cdc37 at the mRNA levels, confirming our in vitro studies. These results demonstrate a relationship between PDZK1, Akt and Cdc37, and potentially Her2/Neu and EGFR, in breast cancer, representing a new axis that can be targeted therapeutically to reduce the burden of human breast cancer.

Keywords

Chaperonins, Membrane Proteins, Breast Neoplasms, Cell Cycle Proteins, MCF-7 Cells, Humans, Female, Carrier Proteins, Proto-Oncogene Proteins c-akt, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
gold