Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Autocrine galectin-1 promotes collective cell migration of squamous cell carcinoma cells through up-regulation of distinct integrins

Authors: Andra, Rizqiawan; Kei, Tobiume; Gaku, Okui; Kazuhiro, Yamamoto; Hideo, Shigeishi; Shigehiro, Ono; Hiroshi, Shimasue; +3 Authors

Autocrine galectin-1 promotes collective cell migration of squamous cell carcinoma cells through up-regulation of distinct integrins

Abstract

We found that high galectin-1 (Gal-1) mRNA levels were associated with invasive squamous cell carcinoma (SCC) cells that expressed Snail, an epithelial-to-mesenchymal transition (EMT) regulator. Both Gal-1 overexpression and soluble Gal-1 treatment accelerated invasion and collective cell migration, along with activation of cdc42 and Rac. Soluble Gal-1 activated c-Jun N-terminal kinase to increase expression levels of integrins α2 and β5, which were essential for Gal-1 dependent collective cell migration and invasiveness. Soluble Gal-1 also increased the incidence of EMT in Snail-expressing SCC cells; these were a minor population with an EMT phenotype under growing conditions. Our findings indicate that soluble Gal-1 promotes invasiveness through enhancing collective cell migration and increasing the incidence of EMT.

Related Organizations
Keywords

Epithelial-Mesenchymal Transition, Integrin beta Chains, Galectin 1, Integrin alpha2, Up-Regulation, Autocrine Communication, Cell Movement, Cell Line, Tumor, Carcinoma, Squamous Cell, Humans, Neoplasm Invasiveness

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%