Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular and Cellular Cardiology
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions

A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families

Authors: Smits, Jeroen P. P.; Koopmann, Tamara T.; Wilders, Ronald; Veldkamp, Marieke W.; Opthof, Tobias; Bhuiyan, Zahir A.; Mannens, Marcel M. A. M.; +4 Authors

A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families

Abstract

Mutations in the gene encoding the human cardiac sodium channel (SCN5A) have been associated with three distinct cardiac arrhythmia disorders: the long QT syndrome, the Brugada syndrome and cardiac conduction disease. Here we report the biophysical features of a novel sodium channel mutation, E161K, which we identified in individuals of two non-related families with symptoms of bradycardia, sinus node dysfunction, generalized conduction disease and Brugada syndrome, or combinations thereof.Wild-type (WT) or E161K sodium channel alpha-subunit and beta-subunit were cotransfected into tsA201 cells to study the functional consequences of mutant sodium channels. Characterization of whole-cell sodium current (I(Na)) using the whole cell patch-clamp technique revealed that the E161K mutation caused an almost threefold reduction in current density (P < 0.001), and an 11.9 mV positive shift of the voltage-dependence of activation (P < 0.0001). The inactivation properties of mutant and WT sodium channels were similar. These results suggest an overall reduction of E161K I(Na). Incorporation of the experimental findings into computational models demonstrate atrial and ventricular conduction slowing as well as a reduction in sinus rate by slowing of the diastolic depolarization rate and upstroke velocity of the sinus node action potential. This reduction in sinus rate was aggravated by application of acetylcholine, simulating the dominant vagal tone during night.Our experimental and computational analysis of the E161K mutation suggests that a loss of sodium channel function is not only associated with Brugada syndrome and conduction disease, but may also cause sinus node dysfunction in carriers of this mutation.

Keywords

Adult, Family Health, Male, Patch-Clamp Techniques, Genotype, DNA Mutational Analysis, Arrhythmias, Cardiac, Middle Aged, Acetylcholine, NAV1.5 Voltage-Gated Sodium Channel, Pedigree, Electrophysiology, Electrocardiography, Long QT Syndrome, Haplotypes, Heart Conduction System, Mutation, Humans, Computer Simulation, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    190
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
190
Top 10%
Top 10%
Top 1%