Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Analytical Chemistryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Analytical Chemistry
Article . 2020 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions

Bioluminescent Protein–Inhibitor Pair in the Design of a Molecular Aptamer Beacon Biosensing System

Authors: Angeliki Moutsiopoulou; David Broyles; Hamdi Joda; Emre Dikici; Avinash Kaur; Angel Kaifer; Sylvia Daunert; +1 Authors

Bioluminescent Protein–Inhibitor Pair in the Design of a Molecular Aptamer Beacon Biosensing System

Abstract

Although bioluminescent molecular beacons designed around resonance quenchers have shown higher signal-to-noise ratios and increased sensitivity compared with fluorescent beacon systems, bioluminescence quenching is still comparatively inefficient. A more elegant solution to inefficient quenching can be realized by designing a competitive inhibitor that is structurally very similar to the native substrate, resulting in essentially complete substrate exclusion. In this work, we designed a conjugated anti-interferon-γ (IFN-γ) molecular aptamer beacon (MAB) attached to a bioluminescent protein, Gaussia luciferase (GLuc), and an inhibitor molecule with a similar structure to the native substrate coelenterazine. To prove that a MAB can be more sensitive and have a better signal-to-noise ratio, a bioluminescence-based assay was developed against IFN-γ and provided an optimized, physiologically relevant detection limit of 1.0 nM. We believe that this inhibitor approach may provide a simple alternative strategy to standard resonance quenching in the development of high-performance molecular beacon-based biosensing systems.

Keywords

Models, Molecular, Molecular Structure, Imidazoles, Biosensing Techniques, Aptamers, Nucleotide, Signal-To-Noise Ratio, Copepoda, Luminescent Proteins, Pyrazines, Luminescent Measurements, Animals, Enzyme Inhibitors, Luciferases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
bronze