Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes & Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes & Development
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Functional small RNAs are generated from select miRNA hairpin loops in flies and mammals

Authors: Okamura, K.; Ladewig, E.; Zhou, L.; Lai, E.C.;

Functional small RNAs are generated from select miRNA hairpin loops in flies and mammals

Abstract

In the canonical animal microRNA (miRNA) pathway, Drosha generates ∼60- to 70-nucleotide pre-miRNA hairpins that are cleaved by Dicer into small RNA duplexes that load into Argonaute proteins, which retain a single mature strand in the active complex. The terminal loops of some miRNA hairpins regulate processing efficiency, but once liberated by Dicer, they are generally considered nonfunctional by-products. Here, we show that specific miRNA loops accumulate in effector Argonaute complexes in Drosophila and mediate miRNA-type repression. This was unexpected, since endogenous loading of Argonaute proteins was believed to occur exclusively via small RNA duplexes. Using in vitro assays, which recapitulate Argonaute-specific loop loading from synthetic pre-miRNAs and even single-stranded oligoribonucleotides corresponding to miRNA loops, we reveal that the loop-loading mechanism is distinct from duplex loading. We also show that miRNA loops loaded into the miRNA effector AGO1 are subject to 3′ resection, and structure–function analyses indicate selectivity of loop loading. Finally, we demonstrate that select miRNA loops in mammals are similarly loaded into Argonaute complexes and direct target repression. Altogether, we reveal a conserved mechanism that yields functional RNAs from miRNA loop regions, broadening the repertoire of Argonaute-dependent regulatory RNAs and providing evidence for functionality of endogenous ssRNA species.

Keywords

Mammals, 570, Mirna hairpin loop, Argonaute protein, 620, Mice, MicroRNAs, Drosophila melanogaster, Gene Expression Regulation, Argonaute Proteins, Animals, Drosophila Proteins, Nucleic Acid Conformation, Small RNA loading, Conserved Sequence, Genome-Wide Association Study

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 10%
Top 10%
Top 1%
Published in a Diamond OA journal