Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Brain Rese...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Brain Research
Article . 1995 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Cloning and expression of SEZ-6, a brain-specific and seizure-related cDNA

Authors: K, Shimizu-Nishikawa; K, Kajiwara; M, Kimura; M, Katsuki; E, Sugaya;

Cloning and expression of SEZ-6, a brain-specific and seizure-related cDNA

Abstract

To clarify the molecular mechanism of neuronal bursting activity of seizures, we have constructed a cDNA library from mouse cerebrum cortex-derived cells treated with pentylentetrazole (PTZ), one of the convulsant drugs. Using a differential screening technique, several cDNA clones whose expressions change with PTZ-treatment were obtained. Among these clones, SEZ-6 was characterized by increased expression with PTZ. Detailed northern analysis showed that expression of SEZ-6 was limited to the brain and increased by the administration of PTZ not only in in vitro cultured cells but also in vivo. Analysis of SEZ-6 cDNA revealed multiple motifs, including typical signal sequence, threonine-rich domain, five copies of short consensus repeats (SCRs) or sushi domain (complement C3b/C4b binding site), two repeated sequences which were partially similar to the CUB domain or complement C1r/s-like repeat, one transmembrane domain and a short cytoplasmic segment in the C-terminal region. Although many proteins with multiple SCRs or CUB domains other than complement-related proteins have been found, this is the first report about a brain-specific cDNA which encodes membrane protein with both SCRs and CUB domain-like segments. Based on these findings, it is evident that SEZ-6 encodes a novel type of protein which may be related to seizure.

Keywords

DNA, Complementary, Molecular Sequence Data, Gene Expression, Membrane Proteins, Nerve Tissue Proteins, Blotting, Northern, Mice, Seizures, Animals, Cloning, Molecular, Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%