Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Neuroscience
Article . 1997 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Organization and Development of Facial Motor Neurons in the Kreisler Mutant Mouse

Authors: Ian J. McKay; Andrew Lumsden; Julian Lewis;

Organization and Development of Facial Motor Neurons in the Kreisler Mutant Mouse

Abstract

AbstractThe adult facial nerve contains the axons from two populations of efferent neurons. First, the branchiomotor efferent neurons that innervate the muscles of the second arch. These neurons project out of the hindbrain in the motor root and form the facial motor nuclei. Second, the preganglionic efferent neurons that innervate the submandibular and pterygopalatine ganglia. These neurons project from the hindbrain via the intermediate nerve and form the superior salivatory nucleus. The motor neurons of the facial nerve are known to originate within rhombomeres 4 and 5. In the kreisler mouse mutant there is a specific disruption of the hindbrain ‐rhombomeres 5 and 6 appear to be absent. To investigate changes in the organization of the facial motor neurons in this mutant, we have used lipophilic dyes to trace the facial motor components both retrogradely and anterogradely. As expected, facial motor neurons are missing from rhombomere 5 in this mutant. In addition, the loss of these neurons correlates with the specific loss of the superior salivatory nucleus. In contrast, the branchiomeric neurons, that originate in rhombomere 4, appear to develop normally. This includes the caudal migration of their cell bodies forming the genu of the facial nerve. Our studies confirm that rhombomeres are critical to hindbrain development and that they are the fundamental unit at which motor neurons are specified.

Keywords

Motor Neurons, Facial Nerve, Mice, Animals, Carbocyanines, Mice, Mutant Strains, Fluorescent Dyes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Average
Top 10%
Top 10%