Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Physi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Physiology
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Permeant anions contribute to voltage dependence of ClC‐2 chloride channel by interacting with the protopore gate

Authors: Jorge E, Sánchez-Rodríguez; José A, De Santiago-Castillo; Jorge, Arreola;

Permeant anions contribute to voltage dependence of ClC‐2 chloride channel by interacting with the protopore gate

Abstract

It has been shown that the voltage (Vm) dependence of ClC Cl− channels is conferred by interaction of the protopore gate with H+ ions. However, in this paper we present evidence which indicates that permeant Cl− ions contribute to Vm‐dependent gating of the broadly distributed ClC‐2 Cl− channel. The apparent open probability (PA) of ClC‐2 was enhanced either by changing the [Cl−]i from 10 to 200 mm or by keeping the [Cl−]i low (10 mm) and then raising [Cl−]o from 10 to 140 mm. Additionally, these changes in [Cl−] slowed down channel closing at positive Vm suggesting that high [Cl−] increased pore occupancy thus hindering closing of the protopore gate. The identity of the permeant anion was also important since the PA(Vm) curves were nearly identical with Cl− or Br− but shifted to negative voltages in the presence of SCN− ions. In addition, gating, closing rate and reversal potential displayed anomalous mole fraction behaviour in a SCN−/Cl− mixture in agreement with the idea that pore occupancy by different permeant anions modifies the Vm dependence ClC‐2 gating. Based on the ec1‐ClC anion pathway, we hypothesized that opening of the protopore gate is facilitated when Cl− ions dwell in the central binding site. In contrast, when Cl− ions dwell in the external binding site they prevent the gate from closing. Finally, this Cl−‐dependent gating in ClC‐2 channels is of physiological relevance since an increase in [Cl−]o enhances channel opening when the [Cl−]i is in the physiological range.

Keywords

CLC-2 Chloride Channels, Mice, Chlorides, Chloride Channels, Animals, Parotid Gland, Ion Channel Gating, Cells, Cultured, Thiocyanates

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
bronze