Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

A GH3-like Domain in Reaper Is Required for Mitochondrial Localization and Induction of IAP Degradation

Authors: Michael R, Olson; Christopher L, Holley; Eugene C, Gan; Daniel A, Colón-Ramos; Bruce, Kaplan; Sally, Kornbluth;

A GH3-like Domain in Reaper Is Required for Mitochondrial Localization and Induction of IAP Degradation

Abstract

Reaper is a potent pro-apoptotic protein originally identified in a screen for Drosophila mutants defective in apoptotic induction. Multiple functions have been ascribed to this protein, including inhibition of IAPs (inhibitors of apoptosis); induction of IAP degradation; inhibition of protein translation; and when expressed in vertebrate cells, induction of mitochondrial cytochrome c release. Structure/function analysis of Reaper has identified an extreme N-terminal motif that appears to be sufficient for inhibition of IAP function. We report here that this domain, although required for IAP destabilization, is not sufficient. Moreover, we have identified a small region of Reaper, similar to the GH3 domain of Grim, that is required for localization of Reaper to mitochondria, induction of IAP degradation, and potent cell killing. Although a mutant Reaper protein lacking the GH3 domain was deficient in these properties, these defects could be fully rectified by appending either the C-terminal mitochondrial targeting sequence from Bcl-xL or a homologous region from the pro-apoptotic protein HID. Together, these data strongly suggest that IAP destabilization by Reaper in intact cells requires Reaper localization to mitochondria and that induction of IAP instability by Reaper is important for the potent induction of apoptosis in Drosophila cells.

Keywords

Cell Nucleus, Microscopy, Confocal, Green Fluorescent Proteins, Neuropeptides, Gene Expression, Apoptosis, Caspase Inhibitors, Peptide Fragments, Protein Structure, Secondary, Inhibitor of Apoptosis Proteins, Mitochondria, Luminescent Proteins, Drosophila melanogaster, Proto-Oncogene Proteins c-bcl-2, Mutagenesis, Caspases, Animals, Drosophila Proteins, Enzyme Inhibitors, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
gold