Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

General Transcription Factor IIA-γ Increases Osteoblast-specific Osteocalcin Gene Expression via Activating Transcription Factor 4 and Runt-related Transcription Factor 2

Authors: Shibing, Yu; Yu, Jiang; Deborah L, Galson; Min, Luo; Yumei, Lai; Yi, Lu; Hong-Jiao, Ouyang; +2 Authors

General Transcription Factor IIA-γ Increases Osteoblast-specific Osteocalcin Gene Expression via Activating Transcription Factor 4 and Runt-related Transcription Factor 2

Abstract

ATF4 (activating transcription factor 4) is an osteoblast-enriched transcription factor that regulates terminal osteoblast differentiation and bone formation. ATF4 knock-out mice have reduced bone mass (severe osteoporosis) throughout life. Runx2 (runt-related transcription factor 2) is a runt domain-containing transcription factor that is essential for bone formation during embryogenesis and postnatal life. In this study, we identified general transcription factor IIA gamma (TFIIA gamma) as a Runx2-interacting factor in a yeast two-hybrid screen. Immunoprecipitation assays confirmed that TFIIA gamma interacts with Runx2 in osteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblast cells showed that in intact cells TFIIA gamma is recruited to the region of the osteocalcin promoter previously shown to bind Runx2 and ATF4. A small region of Runx2 (amino acids 258-286) was found to be required for TFIIA gamma binding. Although TFIIA gamma interacts with Runx2, it does not activate Runx2. Instead, TFIIA gamma binds to and activates ATF4. Furthermore, TFIIA gamma together with ATF4 and Runx2 stimulates osteocalcin promoter activity and endogenous mRNA expression. Small interfering RNA silencing of TFIIA gamma markedly reduces levels of endogenous ATF4 protein and Ocn mRNA in osteoblastic cells. Overexpression of TFIIA gamma increases levels of ATF4 protein. Finally, TFIIA gamma significantly prevents ATF4 degradation. This study shows that a general transcription factor, TFIIA gamma, facilitates osteoblast-specific gene expression through interactions with two important bone transcription factors ATF4 and Runx2.

Related Organizations
Keywords

Mice, Knockout, Osteoblasts, Osteocalcin, Core Binding Factor Alpha 1 Subunit, Activating Transcription Factor 4, Rats, Mice, Gene Expression Regulation, Transcription Factor TFIIA, 3T3-L1 Cells, Cell Line, Tumor, Two-Hybrid System Techniques, COS Cells, Chlorocebus aethiops, Animals, Humans, RNA, Messenger, Promoter Regions, Genetic, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
gold