Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Thrombosi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Thrombosis and Haemostasis
Article . 2007 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

Requirements for cellular co‐trafficking of factor VIII and von Willebrand factor to Weibel–Palade bodies

Authors: van den Biggelaar, M.; Bierings, R.; Storm, G.; Voorberg, J.; Mertens, K.;

Requirements for cellular co‐trafficking of factor VIII and von Willebrand factor to Weibel–Palade bodies

Abstract

von Willebrand factor (VWF) serves a critical role as a carrier of factor (F)VIII in circulation. While it is generally believed that FVIII and VWF assemble in circulation after secretion from different cells, an alternative view is that cells should exist that co-express FVIII and VWF.In this study, intracellular co-expression of FVIII and VWF was studied, with particular reference to complex assembly and high-affinity interaction.Using yellow fluorescent protein-tagged FVIII (FVIII-YFP) and cyan fluorescent protein-tagged VWF (VWF-CFP), we studied intracellular trafficking in human embryonic kidney (HEK293) cells and human umbilical vein endothelial cells (HUVEC). The role of the high-affinity interaction between FVIII and VWF was assessed using a FVIII-YFP variant carrying a Tyr1680Phe substitution, which abolishes high-affinity binding to VWF. Cellular trafficking studies were complemented by binding studies employing purified proteins.Solid phase binding assays employing FVIII-YFP demonstrated that the presence of the fluorescent moiety did not compromise high-affinity binding (K(d) = 0.065 +/- 0.008 nm) whereas the binding of the Tyr1680Phe FVIII-YFP variant was significantly reduced. Co-expression studies in HEK293 cells revealed intracellular co-storage of both FVIII-YFP and Tyr1680Phe FVIII-YFP within VWF-containing storage organelles. In addition, expression of FVIII-YFP and Tyr1680Phe FVIII-YFP in HUVEC demonstrated co-trafficking with endogenous VWF to authentic Weibel-Palade bodies (WPBs).Our findings demonstrate that FVIII trafficking to WPBs is independent of Tyr1680 and high-affinity binding to VWF. We therefore conclude that the structural requirements that determine intracellular co-trafficking differ from those that determine complex assembly in circulation.

Country
Netherlands
Related Organizations
Keywords

Pharmacology, (co)-trafficking, Factor VIII, Weibel-Palade Bodies, Endothelial cells, Recombinant Fusion Proteins, Farmacie(FARM), von Willebrand factor, Biomedische technologie en medicijnen, Cell Line, Farmacie/Biofarmaceutische wetenschappen (FARM), Protein Transport, Amino Acid Substitution, Transduction, Genetic, von Willebrand Factor, Medical technology, Humans, Factors VIII, Fluorescent Dyes, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
bronze