Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2010
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Purkinje cells originate from cerebellar ventricular zone progenitors positive for Neph3 and E-cadherin

Authors: Minoru Kumai; Tomoya Nakatani; Takeshi Inoue; Yuichi Ono; Keiko Muguruma; Yoshiki Sasai; Yasuko Minaki; +1 Authors

Purkinje cells originate from cerebellar ventricular zone progenitors positive for Neph3 and E-cadherin

Abstract

GABAergic Purkinje cells (PCs) provide the primary output from the cerebellar cortex, which controls movement and posture. Although the mechanisms of PC differentiation have been well studied, the precise origin and initial specification mechanism of PCs remain to be clarified. Here, we identified a cerebellar and spinal cord GABAergic progenitor-selective cell surface marker, Neph3, which is a direct downstream target gene of Ptf1a, an essential regulator of GABAergic neuron development. Using FACS, Neph3(+) GABAergic progenitors were sorted from the embryonic cerebellum, and the cell fate of this population was mapped by culturing in vitro. We found that most of the Neph3(+) populations sorted from the mouse E12.5 cerebellum were fated to differentiate into PCs while the remaining small fraction of Neph3(+) cells were progenitors for Pax2(+) interneurons, which are likely to be deep cerebellar nuclei GABAergic neurons. These results were confirmed by short-term in vivo lineage-tracing experiments using transgenic mice expressing Neph3 promoter-driven GFP. In addition, we identified E-cadherin as a marker selectively expressed by a dorsally localized subset of cerebellar Neph3(+) cells. Sorting experiments revealed that the Neph3(+) E-cadherin(high) population in the embryonic cerebellum defined PC progenitors while progenitors for Pax2(+) interneurons were enriched in the Neph3(+) E-cadherin(low) population. Taken together, our results identify two spatially demarcated subregions that generate distinct cerebellar GABAergic subtypes and reveal the origin of PCs in the ventricular zone of the cerebellar primordium.

Keywords

Neuronal subtype, Purkinje cell, Immunoglobulins, Mice, Transgenic, Mice, Purkinje Cells, Origin, Interneurons, Cerebellum, Cell surface marker, Animals, Cell Lineage, Molecular Biology, gamma-Aminobutyric Acid, Neurons, Ptf1a, Fate mapping, Stem Cells, PAX2 Transcription Factor, E-cadherin, Membrane Proteins, Cell Differentiation, Cell Biology, Cadherins, Cell sorting, Neph3, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Top 10%
Top 10%
Top 10%
hybrid