Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.biorxiv....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.biorxiv.org/conten...
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gene
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://doi.org/10.1101/2021.0...
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Discovering single-cell eQTLs from scRNA-seq data only

Authors: Tianxing Ma; Haochen Li; Xuegong Zhang;

Discovering single-cell eQTLs from scRNA-seq data only

Abstract

AbstracteQTL studies are essential for understanding genomic regulation. Effects of genetic variations on gene regulation are cell-type-specific and cellular-context-related, so studying eQTLs at a single-cell level is crucial. The ideal solution is to use both mutation and expression data from the same cells. However, current technology of such paired data in single cells is still immature. We present a new method, eQTLsingle, to discover eQTLs only with single cell RNA-seq (scRNA-seq) data, without genomic data. It detects mutations from scRNA-seq data and models gene expression of different genotypes with the zero-inflated negative binomial (ZINB) model to find associations between genotypes and phenotypes at single-cell level. On a glioblastoma and gliomasphere scRNA-seq dataset, eQTLsingle discovered hundreds of cell-type-specific tumor-related eQTLs, most of which cannot be found in bulk eQTL studies. Detailed analyses on examples of the discovered eQTLs revealed important underlying regulatory mechanisms. eQTLsingle is a unique powerful tool for utilizing the huge scRNA-seq resources for single-cell eQTL studies, and it is available for free academic use at https://github.com/horsedayday/eQTLsingle.

Keywords

Gene Expression Regulation, Sequence Analysis, RNA, Gene Expression Profiling, Exome Sequencing, Single-Cell Analysis, Software

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%