Discovering single-cell eQTLs from scRNA-seq data only
pmid: 35452708
Discovering single-cell eQTLs from scRNA-seq data only
AbstracteQTL studies are essential for understanding genomic regulation. Effects of genetic variations on gene regulation are cell-type-specific and cellular-context-related, so studying eQTLs at a single-cell level is crucial. The ideal solution is to use both mutation and expression data from the same cells. However, current technology of such paired data in single cells is still immature. We present a new method, eQTLsingle, to discover eQTLs only with single cell RNA-seq (scRNA-seq) data, without genomic data. It detects mutations from scRNA-seq data and models gene expression of different genotypes with the zero-inflated negative binomial (ZINB) model to find associations between genotypes and phenotypes at single-cell level. On a glioblastoma and gliomasphere scRNA-seq dataset, eQTLsingle discovered hundreds of cell-type-specific tumor-related eQTLs, most of which cannot be found in bulk eQTL studies. Detailed analyses on examples of the discovered eQTLs revealed important underlying regulatory mechanisms. eQTLsingle is a unique powerful tool for utilizing the huge scRNA-seq resources for single-cell eQTL studies, and it is available for free academic use at https://github.com/horsedayday/eQTLsingle.
- Tsinghua University
- Tsinghua University
- Tsinghua University China (People's Republic of)
- Tsinghua University
- Tsinghua University
Gene Expression Regulation, Sequence Analysis, RNA, Gene Expression Profiling, Exome Sequencing, Single-Cell Analysis, Software
Gene Expression Regulation, Sequence Analysis, RNA, Gene Expression Profiling, Exome Sequencing, Single-Cell Analysis, Software
2 Research products, page 1 of 1
- IsRelatedTo
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
