Endothelial Nitric-oxide Synthase Antisense (NOS3AS) Gene Encodes an Autophagy-related Protein (APG9-like2) Highly Expressed in Trophoblast
pmid: 15755735
Endothelial Nitric-oxide Synthase Antisense (NOS3AS) Gene Encodes an Autophagy-related Protein (APG9-like2) Highly Expressed in Trophoblast
Macroautophagy is an intracellular degradation system for the majority of proteins and some organelles that is conserved in all eukaryotic species. The precise role of autophagy in mammalian development and potential involvement in disease remain to be discerned. Yeast Atg9p is the first integral membrane protein shown to be essential for the cytoplasm to vacuole targeting (Cvt) pathway and autophagy, whereas its mammalian functional orthologue has yet to be identified. We have identified two human genes homologous to yeast Atg9p and designated these as APG9L1 and APG9L2. We have previously identified APG9L2 as NOS3AS, which participates in the post-transcriptional regulation of the endothelial nitric-oxide synthase (NOS3) gene on chromosome 7 through its antisense overlap. In human adult tissues, APG9L1 was ubiquitously expressed, whereas APG9L2 was highly expressed in placenta (trophoblast cells) and pituitary gland. In transient transfection assays we found that both proteins were primarily localized to the perinuclear region and also scattered throughout the cytosol as dots, a subset of which colocalized with an autophagosome-specific marker LC3 under starvation conditions. Finally, by the small interfering RNA-mediated knockdown of APG9L1 in HeLa cells, we demonstrated that APG9L1 is essential for starvation-induced autophagosome formation. In addition, APG9L2 can functionally complement APG9L1 in this process. These results, taken together with those of phylogenetic and sequence analyses, suggest that both APG9L1 and APG9L2 are functionally orthologous to the yATG9 in autophagosome formation. Moreover, APG9L2 is a vertebrate-specific gene that may have gained critical roles in mammalian-specific developmental events, such as placentation, through rapid evolution.
Nitric Oxide Synthase Type III, Pan troglodytes, Molecular Sequence Data, Autophagy-Related Proteins, Gene Expression Regulation, Developmental, Membrane Proteins, Nitric Oxide Synthase Type II, Saccharomyces cerevisiae, Rats, Takifugu, Mice, Antisense Elements (Genetics), Dogs, Drosophila melanogaster, Autophagy, Animals, Humans, Nitric Oxide Synthase, Chickens, HeLa Cells
Nitric Oxide Synthase Type III, Pan troglodytes, Molecular Sequence Data, Autophagy-Related Proteins, Gene Expression Regulation, Developmental, Membrane Proteins, Nitric Oxide Synthase Type II, Saccharomyces cerevisiae, Rats, Takifugu, Mice, Antisense Elements (Genetics), Dogs, Drosophila melanogaster, Autophagy, Animals, Humans, Nitric Oxide Synthase, Chickens, HeLa Cells
26 Research products, page 1 of 3
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).102 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
