Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Identification of a protein that interacts with the vanilloid receptor

Authors: Soon-Youl, Lee;

Identification of a protein that interacts with the vanilloid receptor

Abstract

The vanilloid receptor (VR1 or TRPV1) is a capsaicin (CAP)-sensitive non-selective cation channel. Although its channel activity is reportedly modulated through protein-protein interactions, to date very few VR1 interacting proteins have been identified. To address this issue, a yeast two-hybrid screening technique using the C-terminus of rVR1 as bait was employed. Upon interrogation of a mouse brain library, one gene product that interacts with VR1 and is highly homologous to human eferin was found. Its interaction with VR1 was confirmed by GST-pull-down and co-immunoprecipitation. When cotransfected into HEK cells, VR1 and eferin largely colocalize. Furthermore, in rat dorsal root ganglion cells, the rat eferin homologue also colocalizes with rVR1. However, this protein had no significant effect on VR1 channel activity in response to CAP. This was determined by two-electrode recording of oocytes and whole cell recording of HEK cells that were cotransfected with VR1 and human eferin.

Related Organizations
Keywords

Binding Sites, Sequence Homology, Amino Acid, Receptors, Drug, Molecular Sequence Data, Cell Line, Mice, Microscopy, Fluorescence, Animals, Humans, Immunoprecipitation, Amino Acid Sequence, Carrier Proteins, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Top 10%