Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Controlle...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Controlled Release
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Liposome transduction into cells enhanced by haptotactic peptides (Haptides) homologous to fibrinogen C-termini

Authors: Raphael, Gorodetsky; Lila, Levdansky; Akiva, Vexler; Irina, Shimeliovich; Ibrahim, Kassis; Matti, Ben-Moshe; Shlomo, Magdassi; +1 Authors

Liposome transduction into cells enhanced by haptotactic peptides (Haptides) homologous to fibrinogen C-termini

Abstract

Haptides are 19-21mer cell-binding peptides equivalent to sequences on the C-termini of fibrinogen beta chain (Cbeta), gamma chain (preCgamma) and the extended alphaE chain of fibrinogen (CalphaE). In solution, Haptides accumulated in cells by non-saturable kinetics [Exp. Cell Res. 287 (2003) 116]. This study describes Haptide interactions with liposomes and Haptide-mediated liposome uptake by cells. Haptides became incorporated into negatively charged liposomes, changing their zeta potential. Atomic force microscopy and particle sizing by light scattering showed that the liposomes dissolved Haptide nanoparticles and absorbed them from solution. Pre-mixing fluorescent rhodamine-containing liposomes or "stealth" doxorubicin (DOX)-containing liposomes (Doxil) with Cbeta, preCgamma or to a lesser degree CalphaE, significantly enhanced their uptake by fibroblasts and endothelial cells. Confocal microscopy showed Haptide-induced liposome uptake saturated above approximately 40 microM Haptide. Cytotoxicity tests with lower concentrations of Doxil liposomes indicated that premixing with approximately 40 microM Cbeta or preCgamma increased their toxicity by one order of magnitude. It was evident that the liposomes complexed with an amphiphilic Haptide are transduced through cell membranes, probably by a non-receptor-mediated process. These results suggest that Cbeta or pre-Cgamma could be employed to augment the cellular uptake of drugs in liposomal formulations.

Related Organizations
Keywords

Drug Carriers, Microscopy, Confocal, Rhodamines, Chemistry, Pharmaceutical, Fibrinogen, Fibroblasts, Peptide Fragments, Microscopy, Fluorescence, Doxorubicin, Liposomes, Animals, Humans, Cattle, Aorta, Cells, Cultured, Fluorescein-5-isothiocyanate, Fluorescent Dyes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%