Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
AJP Renal Physiology
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Opioid receptor-like 1 stimulation in the collecting duct induces aquaresis through vasopressin-independent aquaporin-2 downregulation

Authors: Hadrup, Niels; Petersen, Jørgen Søberg; Praetorius, J.; Meier, F.; Græbe, Martin; Miller, Lone Brønd; Staahltoft, Dennis; +4 Authors

Opioid receptor-like 1 stimulation in the collecting duct induces aquaresis through vasopressin-independent aquaporin-2 downregulation

Abstract

Nociceptin, the endogenous ligand of the inhibitory G protein-coupled opioid receptor-like 1 receptor, produces aquaresis (i.e., increases the excretion of solute-free urine) in rats. However, the mechanism underlying this effect has not yet been explained. Using immunohistochemistry, we found the opioid receptor-like 1 receptor in the rat kidney colocalized with the vasopressin-regulated water channel aquaporin-2 in inner medullary collecting ducts. We investigated the aquaretic effect of opioid receptor-like 1 receptor stimulation by infusing the selective nociceptin analog ZP120C; volume depletion was prevented by computer-driven, servo-controlled intravenous volume replacement with 50 mM glucose. ZP120C induced a marked and sustained aquaresis in normal and congestive heart failure rats in the absence of changes in vasopressin plasma concentrations. The ZP120C-induced aquaresis was associated with downregulation of the aquaporin-2 protein level in both rat groups, suggesting that opioid receptor-like 1 receptor stimulation produces aquaresis by inhibiting the vasopressin type-2 receptor-mediated stimulation on collecting duct water reabsorption. However, substantial amounts of PKA-mediated serine 256 phosphorylated aquaporin-2 were still present after 4 h of ZP120C treatment. Furthermore, neither preincubation with nociceptin nor ZP120C inhibited vasopressin-mediated cAMP accumulation in isolated collecting ducts. We conclude that renal opioid receptor-like 1 receptor stimulation in normal and congestive heart failure rats produces aquaresis by a direct renal effect, via aquaporin-2 downregulation, through a mechanism not involving inhibition of vasopressin type-2 receptor-mediated cAMP production.

Related Organizations
Keywords

Heart Failure, Male, Aquaporin 2, Vasopressins, Vasodilator Agents, Nociceptin, Down-Regulation, Urine, Aquaporins, Immunohistochemistry, Nociceptin Receptor, Rats, Rats, Sprague-Dawley, Opioid Peptides, Receptors, Opioid, Animals, Kidney Tubules, Collecting, Infusions, Intravenous

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Top 10%