Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Talantaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Talanta
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Response of halogenated compounds in ion mobility spectrometry depending on their structural features

Authors: Helko, Borsdorf; Thomas, Mayer;

Response of halogenated compounds in ion mobility spectrometry depending on their structural features

Abstract

Ion mobility spectrometry (IMS) with handheld and transportable devices permits the sensitive detection of chlorinated compounds which are important in environmental monitoring. The ion mobility spectra in negative measuring modus mostly show one product ion peak [(H(2)O)(n)Cl(-)] due to dissociative electron attachments. In this paper, we investigated relevant chlorinated compounds (R-Cl) where R represents allyl-, benzyl-, phenyl-, alkyl- and vinyl-groups. These groups cause differences in the R-Cl bond strength and differences in the cleavage of chlorine can therefore be expected. All chlorinated substances investigated provide the same product ion peak at 2.75 cm(2)Vs(-1) independent on the different C-Cl bond strength. However, distinct influences of structural features on the peak intensities of the (H(2)O)(n)Cl(-) product ion peak were established. Generally, increasing sensitivities were obtained in the order chlorobenzenes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%