Analysis of high PSA N-CAM expression during mammalian spinal cord and peripheral nervous system development
doi: 10.1242/dev.112.1.69
pmid: 1769342
Analysis of high PSA N-CAM expression during mammalian spinal cord and peripheral nervous system development
ABSTRACT Using a monoclonal antibody that recognizes specifically a high polysialylated form of N-CAM (high PSA N-CAM), the temporal and spatial expression of this molecule was studied in developing spinal cord and neural crest derivatives of mouse truncal region. Temporal expression was analyzed on immunoblots of spinal cord and dorsal root ganglia (DRGs) extracts microdissected at different developmental stages. Analysis of the ratio of high PSA N-CAM to total N-CAM indicated that sialylation and desialylation are independently regulated from the expression of polypeptide chains of N-CAM. Motoneurons, dorsal root ganglia cells and commissural neurons present a homogeneous distribution of high PSA N-CAMs on both their cell bodies and their neurites. Sialylation of N-CAM can occur in neurons after their aggregation in peripheral ganglia as demonstrated for dorsal root ganglia at E12. Furthermore, peripheral ganglia express different levels of high PSA N-CAM. With in vitro models using mouse neural crest cells, we found that expression of high PSA N-CAM was restricted to cells presenting an early neuronal phenotype, suggesting a common regulation for the expression of high PSA N-CAM molecules, neurofilament proteins and sodium channels. Using perturbation experiments with endoneuraminidase, we confirmed that high PSA N-CAM molecules are involved in fasciculation and neuritic growth when neurons derived from neural crest grow on collagen substrata. However, we demonstrated that these two parameters do not appear to depend on high PSA N-CAM molecules when cells were grown on a fibronectin substratum, indicating the existence of a hierarchy among adhesion molecules.
Cell Adhesion Molecules, Neuronal, Immunoblotting, Gene Expression, Mice, Spinal Cord, Neural Crest, Polysaccharides, Ganglia, Spinal, Sialic Acids, Animals, Microscopy, Phase-Contrast, Peripheral Nerves, Cells, Cultured
Cell Adhesion Molecules, Neuronal, Immunoblotting, Gene Expression, Mice, Spinal Cord, Neural Crest, Polysaccharides, Ganglia, Spinal, Sialic Acids, Animals, Microscopy, Phase-Contrast, Peripheral Nerves, Cells, Cultured
15 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).62 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
