Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Free Radical Biology...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Free Radical Biology and Medicine
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2005
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2005
Data sources: HAL INRAE
versions View all 5 versions

The plant multigenic family of thiol peroxidases

Authors: Rouhier, Nicolas; Jacquot, J.P.;

The plant multigenic family of thiol peroxidases

Abstract

Thiol peroxidases are ubiquitous recently characterized heme-free peroxidases, which catalyze the reduction of peroxynitrites and of various peroxides by catalytic cysteine residues and thiol-containing proteins as reductants. In plants, five different classes can be distinguished, according to the number and the position of conserved catalytic cysteines. Four classes are defined as peroxiredoxins and were already identified by phylogenetic sequence analysis, 1-Cys, 2-Cys, type II, and type Q peroxiredoxins, and the fifth is represented by glutathione peroxidases, which were recently shown to possess a thioredoxin-dependent activity in plants. Since the discovery of peroxiredoxins in plants in 1996, a lot of work has been devoted to the biochemical and functional characterization of the different peroxiredoxin isoforms, but in contrast, few structural data are available. The analysis of the Arabidopsis thaliana genome indicates that at least 17 isoforms of thioredoxin-dependent peroxidases are expressed in various plant compartments. The role of these proteins is discussed in terms of electron donor and substrate specificities and in light of their expression and localization. These enzymes are expressed in many plant tissues and are involved notably in the protection of the photosynthetic apparatus, in the response to various biotic or abiotic stresses by fighting reactive oxygen or nitrogen species and lipid peroxidation.

Keywords

[SDV]Life Sciences [q-bio], Arabidopsis, Genes, Plant, Ascorbate Peroxidases, Gene Expression Regulation, Plant, Cysteine, Photosynthesis, Conserved Sequence, Glutaredoxins, Phylogeny, Plant Physiological Phenomena, Plant Proteins, Glutathione Peroxidase, Hydrogen Peroxide, Peroxiredoxins, Glutathione, Reactive Nitrogen Species, [SDV] Life Sciences [q-bio], Peroxidases, Multigene Family, Oxidoreductases, Genome, Plant

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    173
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
173
Top 10%
Top 10%
Top 1%