Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellular Signallingarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cellular Signalling
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Dual role of tubulin-cytoskeleton in store-operated calcium entry in human platelets

Authors: Pedro C, Redondo; Alan G S, Harper; Stewart O, Sage; Juan A, Rosado;

Dual role of tubulin-cytoskeleton in store-operated calcium entry in human platelets

Abstract

Two mechanisms for store-operated Ca(2+) entry (SOCE) regulated by two independent Ca(2+) stores, the dense tubular system (DTS) and the acidic stores, have been described in platelets. We have previously suggested that coupling between the type II IP(3) receptor (IP(3)RII) and hTRPC1, involving reorganization of the actin microfilaments, play an important role in SOCE. However, the involvement of the tubulin microtubules, located beneath the plasma membrane, remains unclear. Here we show that the microtubule disrupting agent colchicine reduced Ca(2+) entry stimulated by low concentrations (0.1 U/mL) of thrombin, which activates SOCE mostly by depleting acidic Ca(2+)-store. Consistently, colchicine reduced SOCE activated by 2,5 di-(tertbutyl)-1,4-hydroquinone (TBHQ), which selectively depletes the acidic Ca(2+) stores. In contrast, colchicine enhanced SOCE mediated by depletion of the DTS, induced by high concentrations of thapsigargin (TG), which depletes both the acidic Ca(2+) stores and the DTS, the major releasable Ca(2+) store in platelets. These findings were confirmed by using Sr(2+) as a surrogate for Ca(2+) entry. Colchicine attenuated the coupling between IP(3)RII and hTRPC1 stimulated by thrombin while it enhanced that evoked by TG. Paclitaxel, which induces microtubular stabilization and polymerization, exerted the opposite effects on thrombin- and TG-evoked SOCE and coupling between IP(3)RII and hTRPC1 compared with colchicine. Neither colchicine nor paclitaxel altered the ability of platelets to extrude Ca(2+). These findings suggest that tubulin microtubules play a dual role in SOCE, acting as a barrier that prevents constitutive SOCE regulated by DTS, but also supporting SOCE mediated by the acidic Ca(2+) stores.

Related Organizations
Keywords

Blood Platelets, Ion Transport, Paclitaxel, Thrombin, Microtubules, Tubulin Modulators, Actin Cytoskeleton, Tubulin, Humans, Inositol 1,4,5-Trisphosphate Receptors, Thapsigargin, Calcium, Colchicine, TRPC Cation Channels

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Average
Top 10%