Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Plant Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Cell
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Cell
Article . 2005
versions View all 2 versions

The Essential Basic Helix-Loop-Helix Protein FIT1 Is Required for the Iron Deficiency Response

Authors: Elizabeth P, Colangelo; Mary Lou, Guerinot;

The Essential Basic Helix-Loop-Helix Protein FIT1 Is Required for the Iron Deficiency Response

Abstract

Regulation of iron uptake is critical for plant survival. Although the activities responsible for reduction and transport of iron at the plant root surface have been described, the genes controlling these activities are largely unknown. We report the identification of the essential gene Fe-deficiency Induced Transcription Factor 1 (FIT1), which encodes a putative transcription factor that regulates iron uptake responses in Arabidopsis thaliana. Like the Fe(III) chelate reductase FRO2 and high affinity Fe(II) transporter IRT1, FIT1 mRNA is detected in the outer cell layers of the root and accumulates in response to iron deficiency. fit1 mutant plants are chlorotic and die as seedlings but can be rescued by the addition of supplemental iron, pointing to a defect in iron uptake. fit1 mutant plants accumulate less iron than wild-type plants in root and shoot tissues. Microarray analysis shows that expression of many (72 of 179) iron-regulated genes is dependent on FIT1. We demonstrate that FIT1 regulates FRO2 at the level of mRNA accumulation and IRT1 at the level of protein accumulation. We propose a new model for iron uptake in Arabidopsis where FRO2 and IRT1 are differentially regulated by FIT1.

Related Organizations
Keywords

Binding Sites, FMN Reductase, Sequence Homology, Amino Acid, Arabidopsis Proteins, Iron, Helix-Loop-Helix Motifs, Arabidopsis, Iron Deficiencies, Plants, Genetically Modified, Plant Roots, Gene Expression Regulation, Plant, Seedlings, Genes, Regulator, Mutation, Basic Helix-Loop-Helix Transcription Factors, RNA, Messenger, Promoter Regions, Genetic, Cation Transport Proteins, Conserved Sequence, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    691
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
691
Top 0.1%
Top 1%
Top 1%
bronze