The protective role of NAD(P)H:quinone oxidoreductase 1 on acetaminophen-induced liver injury is associated with prevention of adenosine triphosphate depletion and improvement of mitochondrial dysfunction
pmid: 25224400
The protective role of NAD(P)H:quinone oxidoreductase 1 on acetaminophen-induced liver injury is associated with prevention of adenosine triphosphate depletion and improvement of mitochondrial dysfunction
An overdose of acetaminophen (APAP) causes hepatotoxicity due to its metabolite, N-acetyl-p-benzoquinone imine.quinone oxidoreductase 1 (NQO1) is an important enzyme for detoxification, because it catabolizes endogenous/exogenous quinone to hydroquinone. Although various studies have suggested the possible involvement of NQO1 in APAP-induced hepatotoxicity, its precise role in this remains unclear. We investigated the role of NQO1 against APAP-induced hepatotoxicity using a genetically modified rodent model. NQO1 wild-type (WT) and knockout (KO) mice were treated with different doses of APAP, and we evaluated the mortality and toxicity markers for cell death caused by APAP. NQO1 KO mice showed high sensitivity to APAP-mediated hepatotoxicity (as indicated by a large necrotic region) as well as increased levels of nitrotyrosine adducts and reactive oxygen species. APAP-induced cell death in the livers and primary hepatocytes of NQO1 KO mice, which was accompanied by an extensive reduction in adenosine triphosphate (ATP) levels. In accordance with this ATP depletion, cytosolic increases in mitochondrial proteins such as apoptosis-inducing factor, second mitochondria-derived activator of caspases/DIABLO, endonuclease G, and cytochrome c, which indicate severe mitochondrial dysfunction, were observed in NQO1 KO mice but not in WT mice after APAP exposure. Severe mitochondrial depolarization was also greater in hepatocytes isolated from NQO1 KO mice. Collectively, our data suggest that NQO1 plays a critical role in protection against energy depletion caused by APAP, and NQO1 may be useful in the development of therapeutic approaches to effectively diminish the hepatotoxicity caused by an APAP overdose.
- Chonnam National University Korea (Republic of)
- Texas Tech University System United States
- Korea Research Institute of Bioscience and Biotechnology Korea (Republic of)
- Korea Research Institute of Standards and Science Korea (Republic of)
- Korea University of Science and Technology Korea (Republic of)
Male, Mice, Knockout, Dose-Response Relationship, Drug, Mitochondria, Liver, Mice, Inbred C57BL, Mice, Adenosine Triphosphate, Hepatocytes, NAD(P)H Dehydrogenase (Quinone), Animals, Chemical and Drug Induced Liver Injury, Reactive Oxygen Species, Acetaminophen
Male, Mice, Knockout, Dose-Response Relationship, Drug, Mitochondria, Liver, Mice, Inbred C57BL, Mice, Adenosine Triphosphate, Hepatocytes, NAD(P)H Dehydrogenase (Quinone), Animals, Chemical and Drug Induced Liver Injury, Reactive Oxygen Species, Acetaminophen
3 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
