Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pharmaceutical Biolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pharmaceutical Biology
Article . 2020 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pharmaceutical Biology
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pharmaceutical Biology
Article . 2020
Data sources: DOAJ
versions View all 4 versions

Bioactive constituents of Salvia przewalskii and the molecular mechanism of its antihypoxia effects determined using quantitative proteomics

Authors: Yafeng Wang; Delong Duo; Yingjun Yan; Rongyue He; Shengbiao Wang; Aixia Wang; Xinan Wu;

Bioactive constituents of Salvia przewalskii and the molecular mechanism of its antihypoxia effects determined using quantitative proteomics

Abstract

Context: Environmental hypobaric hypoxia induces several physiological or pathological responses in individuals in high-altitude regions. Salvia przewalskii Maxim (Labiatae) (SPM) is a traditional Chinese herbal medicine and has known antibacterial, antiviral, antioxidant, anti-thrombotic, and anti-depressant activities.Objective: This study examined the antihypoxia effects of SPM in vivo.Materials and methods: The dried and pulverised of SPM was extracted from root crude drug with 70% ethanol with ultrasound. Male Sprague-Dawley rats were divided into three groups (n = 10): normal group, hypoxia group (altitude of 4260 m), and hypoxia + SPM group (altitude of 4260 m, SPM of 1.0 g/kg/day). The experiment persisted for 4 weeks. The mean pulmonary arterial pressure (mPAP), hypoxia-inducible factor-1α (HIF-1α) mRNA, and lung pathology were analysed using pulmonary artery pressure recorder, quantitative polymerase chain reaction, and histopathological analysis. Moreover, the effects of SPM on lung proteomes during hypoxia were observed by a TMT-based proteomic approach.Results: Pre-treatment with SPM decreased mPAP (24.86%) and HIF-1α (31.24%), and attenuated the pathological changes in lung tissues. In addition, a total of 28 proteins were differentially expressed in lung of hypoxia + SPM group (fold change > ± 1.2 and p < 0.05). The differentially altered proteins were primarily associated with antioxidative stress, as evidenced by the downregulated expression of Adh7, Cyp2d1, Plod2, Selenow, ND3, and Fabp1, and fructose metabolism, as evidenced by the downregulated expression of Khk and Aldob.Discussion and conclusions: These results suggested that SPM is a promising drug for antihypoxia. The mechanism of action might be related to increasing antioxidant capacity and inhibiting fructose metabolism.

Related Organizations
Keywords

Male, Proteomics, Plant Extracts, RM1-950, fructose metabolism, salvia przewalskii, Antioxidants, Rats, Rats, Sprague-Dawley, Random Allocation, oxidoreduction systems, Treatment Outcome, Animals, Therapeutics. Pharmacology, Salvia, Hypoxia, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
gold