Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 2005
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2005 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Current Biology
Article . 2005
versions View all 4 versions

Presynaptic Spectrin Is Essential for Synapse Stabilization

Authors: Pielage, Jan; Fetter, Richard D.; Davis, Graeme W.;

Presynaptic Spectrin Is Essential for Synapse Stabilization

Abstract

Precise neural circuitry is established and maintained through a regulated balance of synapse stabilization and disassembly. Currently, little is known about the molecular mechanisms that specify synapse stability versus disassembly.Here, we demonstrate that presynaptic spectrin is an essential scaffold that is required to maintain synapse stability at the Drosophila neuromuscular junction (NMJ). Loss of presynaptic spectrin leads to synapse disassembly and ultimately to the elimination of the NMJ. Synapse elimination is documented through light-level, ultrastructural, and electrophysiological assays. These combined assays reveal that impaired neurotransmission is secondary to synapse retraction. We demonstrate that loss of presynaptic, but not postsynaptic, spectrin leads to the disorganization and elimination of essential synaptic cell-adhesion molecules. In addition, we provide evidence of altered axonal transport and disrupted synaptic microtubules as events that contribute to synapse retraction in animals lacking presynaptic spectrin.Our data suggest that presynaptic spectrin functions as an essential presynaptic scaffold that may link synaptic cell adhesion with the stabilization of the underlying microtubule cytoskeleton.

Related Organizations
Keywords

Agricultural and Biological Sciences(all), Biochemistry, Genetics and Molecular Biology(all), Genetic Vectors, Neuromuscular Junction, Spectrin, Axonal Transport, Immunohistochemistry, Microtubules, Electrophysiology, Microscopy, Electron, Transmission, Larva, Synapses, Animals, Drosophila, Neural Cell Adhesion Molecules, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    146
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
146
Top 10%
Top 10%
Top 10%
hybrid