Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Death and Disea...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Death and Disease
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Death and Disease
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2018
Data sources: PubMed Central
versions View all 3 versions

Knockout of zebrafish interleukin 7 receptor (IL7R) by the CRISPR/Cas9 system delays retinal neurodevelopment

Authors: Shijiao Cai; Yang Chen; Yue Shang; Jianlin Cui; Zongjin Li; Yuhao Li;

Knockout of zebrafish interleukin 7 receptor (IL7R) by the CRISPR/Cas9 system delays retinal neurodevelopment

Abstract

AbstractInterleukin 7 receptor (il7r), a transmembrane receptor, belongs to the type I cytokine receptor family. Il7r is involved in the pathogenesis of neurodegenerative disorders, such as multiple sclerosis. Targeted knockdown of il7r leads to delayed myelination, highlighting the potential role of il7r in the development of the nervous system. Zebrafish is an ideal model for the study of neurogenesis; moreover, the il7r gene is highly conserved between zebrafish and human. The aim of the present study was to investigate the novel function of il7r in neurogenesis. First, an il7r−/− homozygous mutant line was generated by clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 (CRISPR/Cas9) technology. Second, the gross development of il7r−/− mutants revealed remarkably smaller eyes and delayed retinal neurodifferentiation. Third, microarray analysis revealed that genes associated with the phototransduction signalling pathway were strongly down-regulated in il7r−/− mutants. Finally, the results from behavioural tests indicated that visual function was impaired in il7r−/− mutant larvae. Overall, our data demonstrate that a lack of il7r retards the development of the retina. Thus, il7r is an essential molecule for maintaining normal retinal development in zebrafish.

Related Organizations
Keywords

Receptors, Interleukin-7, Neurogenesis, Gene Expression Regulation, Developmental, Zebrafish Proteins, Article, Animals, Genetically Modified, CRISPR-Associated Protein 9, Gene Knockdown Techniques, Mutation, Animals, Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR-Cas Systems, Photic Stimulation, Vision, Ocular, Zebrafish, Retinal Neurons, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
gold