Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2003 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 2003
versions View all 2 versions

Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome

Authors: Stephen J, Ansley; Jose L, Badano; Oliver E, Blacque; Josephine, Hill; Bethan E, Hoskins; Carmen C, Leitch; Jun Chul, Kim; +10 Authors

Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome

Abstract

Bardet-Biedl syndrome (BBS) is a genetically heterogeneous disorder characterized primarily by retinal dystrophy, obesity, polydactyly, renal malformations and learning disabilities. Although five BBS genes have been cloned, the molecular basis of this syndrome remains elusive. Here we show that BBS is probably caused by a defect at the basal body of ciliated cells. We have cloned a new BBS gene, BBS8, which encodes a protein with a prokaryotic domain, pilF, involved in pilus formation and twitching mobility. In one family, a homozygous null BBS8 mutation leads to BBS with randomization of left-right body axis symmetry, a known defect of the nodal cilium. We have also found that BBS8 localizes specifically to ciliated structures, such as the connecting cilium of the retina and columnar epithelial cells in the lung. In cells, BBS8 localizes to centrosomes and basal bodies and interacts with PCM1, a protein probably involved in ciliogenesis. Finally, we demonstrate that all available Caenorhabditis elegans BBS homologues are expressed exclusively in ciliated neurons, and contain regulatory elements for RFX, a transcription factor that modulates the expression of genes associated with ciliogenesis and intraflagellar transport.

Keywords

Centrosome, Male, Neurons, Base Sequence, Gene Expression Profiling, Homozygote, Molecular Sequence Data, Cell Line, Cytoskeletal Proteins, Mutation, Animals, Humans, Female, Amino Acid Sequence, Cilia, Lod Score, Caenorhabditis elegans, Bardet-Biedl Syndrome, Alleles, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    594
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
594
Top 1%
Top 1%
Top 0.1%