Site-directed mutagenesis of two amino acid residues in cytochrome b559 α subunit that interact with a phosphatidylglycerol molecule (PG772) induces quinone-dependent inhibition of photosystem II activity
pmid: 30039358
Site-directed mutagenesis of two amino acid residues in cytochrome b559 α subunit that interact with a phosphatidylglycerol molecule (PG772) induces quinone-dependent inhibition of photosystem II activity
X-ray crystallographic analysis (1.9-Å resolution) of the cyanobacterial photosystem II (PSII) dimer showed the presence of five phosphatidylglycerol (PG) molecules per reaction center. One of the PG molecules, PG772, is located in the vicinity of the QB-binding site. To investigate the role of PG772 in PSII, we performed site-directed mutagenesis in the cytochrome (Cyt) b559 α subunit of Synechocystis sp. PCC 6803 to change two amino acids, Thr-5 and Ser-11, which interact with PG772. The photosynthetic activity of intact cells was slightly lower in all mutants than that of cells in the control strain; however, the oxygen-evolving PSII activity was decreased markedly in cells of mutants, as measured using artificial quinones (such as p-benzoquinone). Furthermore, electron transport from QA to QB was inhibited in mutants incubated with quinones, particularly under high-intensity light conditions. Lipid analysis of purified PSII showed approximately one PG molecule per reaction center, presumably PG772, was lost in the PSII dimer from the T5A and S11A mutants compared with that in the PSII dimer from the control strain. In addition, protein analysis of monomer and dimer showed decreased levels of PsbV and PsbU extrinsic proteins in the PSII monomer purified from T5A and S11A mutants. These results suggest that site-directed mutagenesis of Thr-5 and Ser-11, which presumably causes the loss of PG772, induces quinone-dependent inhibition of PSII activity under high-intensity light conditions and destabilizes the binding of extrinsic proteins to PSII.
- Okayama University Japan
- Academia Sinica Taiwan
- University of Tokyo Japan
Molecular Sequence Data, Mutagenesis, Site-Directed, Photosystem II Protein Complex, Phosphatidylglycerols, Amino Acid Sequence, Amino Acids, Photosynthesis, Cytochrome b Group, Protein Structure, Secondary
Molecular Sequence Data, Mutagenesis, Site-Directed, Photosystem II Protein Complex, Phosphatidylglycerols, Amino Acid Sequence, Amino Acids, Photosynthesis, Cytochrome b Group, Protein Structure, Secondary
1 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
