Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ChemPlusChemarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ChemPlusChem
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Competitive Adsorption of PbII, NiII, and SrII Ions on Graphene Oxides: A Combined Experimental and Theoretical Study

Authors: Shubin, Yang; Changlun, Chen; Yue, Chen; Jiaxing, Li; Dongqi, Wang; Xiangke, Wang; Wenping, Hu;

Competitive Adsorption of PbII, NiII, and SrII Ions on Graphene Oxides: A Combined Experimental and Theoretical Study

Abstract

AbstractThe individual and competitive adsorption of PbII, NiII, and SrII on graphene oxides (GOs) was investigated by experimental and density functional theory (DFT) studies. Experimental results indicate that 1) in all the single, binary, and ternary metal‐ion adsorption systems, the sequence of maximum adsorption capacities is PbII>NiII>SrII on GOs; 2) the desorption hysteresis of metal ions from GOs shows the adsorption affinity in the same sequence: PbII>NiII>SrII. For the first time, DFT calculations indicate that 1) PbII and NiII prefer to interact with the COH group, whereas SrII interacts with COH and COC comparably, and 2) PbII can easily abstract the OH group from the GOs to form the much more stable Pb(OH)–GO complex. These findings are very important and useful for understanding the mechanisms of heavy‐metal‐ion adsorption on GOs and assessing the adsorption of coexisting heavy‐metal ions on GOs.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    102
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
102
Top 10%
Top 10%
Top 1%