Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2005 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2005
versions View all 3 versions

Dictyostelium discoideum requires an Alix/AIP1 homolog, DdAlix, for morphogenesis in alkaline environments

Authors: Tatsuya Maeda; Masatoshi Maki; Hideki Shibata; Susumu Ohkouchi; Fumika Aruga; Hajime Saito;

Dictyostelium discoideum requires an Alix/AIP1 homolog, DdAlix, for morphogenesis in alkaline environments

Abstract

Alix and its homologs are involved in various phenomena such as endosomal protein‐sorting and adaptation to stress conditions. In this study, we found that development of Dictyostelium discoideum Alix (DdAlix) deletion mutant (alx −) cells was impaired in alkaline pH environments. The fruiting body formation efficiency of alx − cells at pH 9.0 was significantly lower than that of wild‐type cells (6.8 ± 4.2% vs 93 ± 6.3%). The alkaline‐sensitive phenotype of alx − cells was rescued by addition of salt. The phenotype was rescued by exogenous expression of human Alix as well as DdAlix but not by that of either Saccharomyces cerevisiae Alix homolog Rim20 or Bro1. DdAlix may be, structurally and functionally, more related to human Alix than to yeast Rim20 and Bro1.

Keywords

Saccharomyces cerevisiae Proteins, Vesicular Transport Proteins, Cell Cycle Proteins, Alkalies, Environment, pH response, Morphogenesis, PalA, Animals, Humans, Dictyostelium, Alkaline adaptation, Phylogeny, Endosomal Sorting Complexes Required for Transport, Calcium-Binding Proteins, Microfilament Proteins, Sodium, Rim20, Cations, Monovalent, Hydrogen-Ion Concentration, Alix, Potassium, Carrier Proteins, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
bronze