Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Egyptian Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Egyptian Journal of Biological Pest Control
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Diversity of indigenous Bacillus thuringiensis isolates toxic to the diamondback moth, Plutella xylostella (L.) (Plutellidae: Lepidoptera)

Authors: R. Naga Sri Navya; V. Balasubramani; M. Raveendran; M. Murugan; A. Lakshmanan;

Diversity of indigenous Bacillus thuringiensis isolates toxic to the diamondback moth, Plutella xylostella (L.) (Plutellidae: Lepidoptera)

Abstract

Abstract Background Toxins from the Bacillus thuringiensis (Bt) bacterium are employed as an alternative to synthetic pesticides in pest management. The greatest threat to the long-term viability of Bt toxins is resistance evolution in the target pests. Genetic diversity and toxicity of Bt isolates were studied in this work in order to find Bt isolates with novel cry genes. Results In terms of colony morphology, among a total of 60 isolates, 51 isolates had off-white colour colonies with typical fried egg appearance, irregular shape, flat and undulate margin. Different crystal shapes, viz. spherical (88.13%), bipyramidal (49.15%), cuboidal (42.37%), rectangular, and crystals attached to spores (3.38%) were observed among Bt isolates. SDS-PAGE analysis of spore crystal mixture showed the presence of proteins with various molecular weights ranging from 124 to 26 kDa. PCR screening with cry1, cry2, cry9 and vip3A1 primers showed isolates with varied insecticidal gene combinations. Bt isolates containing cry1 genes were found to be abundant (30), followed by cry2 (9) and vip3A1 (9). Cry9 was absent in all the 60 isolates tested. Insecticidal activity of spore crystal mixtures ranged from 0 to 100% mortality. Furthermore, 12 isolates were found to be highly toxic against the larvae of diamondback moth, Plutella xylostella (L.) (Plutellidae: Lepidoptera) with 100% mortality, at 25 µg/ml in leaf disc bioassay. Conclusions The present work established the diversity of Bt isolates and confirmed the importance of continuous exploration of new Bt isolates for novel genes. Further, research needs to be carried out to unveil the hidden potential of these toxic isolates.

Related Organizations
Keywords

Diversity, Genes, S, Crystal, Bacillus thuringiensis, Agriculture, Plutella xylostella, Mortality

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
gold