Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2012 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2012 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

Constitutively Active Mutant gp130 Receptor Protein from Inflammatory Hepatocellular Adenoma Is Inhibited by an Anti-gp130 Antibody That Specifically Neutralizes Interleukin 11 Signaling

Authors: Jan, Sommer; Timo, Effenberger; Elena, Volpi; Georg H, Waetzig; Marten, Bernhardt; Jan, Suthaus; Christoph, Garbers; +3 Authors

Constitutively Active Mutant gp130 Receptor Protein from Inflammatory Hepatocellular Adenoma Is Inhibited by an Anti-gp130 Antibody That Specifically Neutralizes Interleukin 11 Signaling

Abstract

Ligand-independent constitutively active gp130 mutants were described to be responsible for the development of inflammatory hepatocellular adenomas (IHCAs). These variants had gain-of-function somatic mutations within the extracellular domain 2 (D2) of the gp130 receptor chain. Cytokine-dependent Ba/F3 cells were transduced with the constitutively active variant of gp130 featuring a deletion in the domain 2 from Tyr-186 to Tyr-190 (gp130ΔYY). These cells showed constitutive phosphorylation of signal transducer and activator of transcription-3 (STAT3) and cytokine-independent proliferation. Deletion of the Ig-like domain 1 (D1) of gp130, but not anti-gp130 mAbs directed against D1, abolished constitutive activation of gp130ΔYY, highlighting that this domain is involved in ligand-independent activation of gp130ΔYY. Moreover, soluble variants of gp130 were not able to inhibit the constitutive activation of gp130ΔYY. However, the inhibition of constitutive activation of gp130ΔYY was achieved by the anti-gp130 mAb B-P4, which specifically inhibits gp130 signaling by IL-11 but not by other IL-6 type cytokines. IL-11 but not IL-6 levels were found previously to be up-regulated in IHCAs, suggesting that mutations in gp130 are leading to IL-11-like signaling. The mAb B-P4 might be a valuable tool to inhibit the constitutive activation of naturally occurring gp130 mutants in IHCAs and rare cases of gp130-associated hepatocellular carcinoma.

Keywords

Interleukin-6, Antibodies, Monoclonal, Antineoplastic Agents, Flow Cytometry, Interleukin-11, Ligands, Adenoma, Liver Cell, Protein Structure, Tertiary, Mice, COS Cells, Chlorocebus aethiops, Cytokine Receptor gp130, Animals, Cytokines, Humans, Gene Deletion, Cell Proliferation, Plasmids, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
gold