Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Light-regulated expression of terpene synthase gene, AtTPS03, is controlled by the bZIP transcription factor, HY5, in Arabidopsis thaliana

Authors: Rahul, Michael; Avriti, Ranjan; Ravi Shankar, Kumar; Pranshu Kumar, Pathak; Prabodh Kumar, Trivedi;

Light-regulated expression of terpene synthase gene, AtTPS03, is controlled by the bZIP transcription factor, HY5, in Arabidopsis thaliana

Abstract

The terpenoid pathway serves as an essential source of all isoprenoid precursors and metabolites that are of great pharmacological importance. The major enzymes for the synthesis of these diverse molecules is the terpene synthases (TPSs), which catalyse the final step of the synthesis of the important secondary products, the terpenes. Previous studies have reported that the various environmental factors, including light govern the synthesis of terpenoids. However, the molecular components and steps involved in the regulation of synthesis of these molecules have not been studied in detail. In this study, we report that the light regulates the expression of the members of terpene synthase gene family in Arabidopsis thaliana. We demonstrate that ELONGATED HYPOCOTYL (HY5), a basic leucine zipper transcription factor, plays a crucial role in light-mediated transcriptional regulation of terpene synthase, AtTPS03. Expression analysis using hy5-215 mutant and HY5 over-expression lines revealed that HY5 acts as a positive regulator of AtTPS03. Additionally, studies including AtTPS03 Promoter::reporter transgenic lines in wild-type and hy5-215, as well as electrophoretic mobility shift assay (EMSA), suggest an interaction of HY5 with the AtTPS03 promoter. Together, our analysis indicate the requirement for HY5 for light-mediated regulation of AtTPS03 for the terpenoid biosynthesis in Arabidopsis.

Keywords

Alkyl and Aryl Transferases, Basic-Leucine Zipper Transcription Factors, Light, Arabidopsis Proteins, Gene Expression Regulation, Plant, Mutation, Arabidopsis, Up-Regulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 1%
Top 10%
Top 10%