Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Biotechnologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Biotechnology
Article . 2003 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Site-specific gene targeting in mouse embryonic stem cells with intact bacterial artificial chromosomes

Authors: Yi, Yang; Brian, Seed;

Site-specific gene targeting in mouse embryonic stem cells with intact bacterial artificial chromosomes

Abstract

Homologous recombination in Escherichia coli simplifies the generation of gene targeting constructs for transduction into mouse embryonic stem (ES) cells. Taking advantage of the extensive homology provided by intact bacterial artificial chromosomes (BACs), we have developed an efficient method for preparing targeted gene disruptions in ES cells. Correctly integrated clones were identified by a simple screening procedure based on chromosomal fluorescence in situ hybridization (FISH). To date, five mutant lines have been generated and bred to homozygosity by this approach.

Related Organizations
Keywords

Recombination, Genetic, Chromosomes, Artificial, Bacterial, Stem Cells, Polymerase Chain Reaction, Mice, Transduction, Genetic, Gene Targeting, Escherichia coli, Mutagenesis, Site-Directed, Animals, Cloning, Molecular, In Situ Hybridization, Fluorescence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Top 10%
Top 10%
Top 10%