Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2005
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2005 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Impact of transcription factor Sox8 on oligodendrocyte specification in the mouse embryonic spinal cord

Authors: Stolt, C. Claus; Schmitt, Simone; Lommes, Petra; Sock, Elisabeth; Wegner, Michael;

Impact of transcription factor Sox8 on oligodendrocyte specification in the mouse embryonic spinal cord

Abstract

The myelin-forming oligodendrocytes of the mouse embryonic spinal cord express the three group E Sox proteins Sox8, Sox9, and Sox10. They require Sox9 for their specification from neuroepithelial cells of the ventricular zone and Sox10 for their terminal differentiation and myelination. Here, we show that during oligodendrocyte development, Sox8 is expressed after Sox9, but before Sox10. Loss of Sox8 did not impair oligodendrocyte specification by itself, but enhanced the Sox9-dependent defect. Oligodendrocyte progenitors were still generated in the Sox9-deficient spinal cord, albeit at 20-fold lower rates than in the wildtype. Combined loss of Sox8 and Sox9, in contrast, led to a near complete loss of oligodendrocytes. Other cell types such as ventricular zone cells and radial glia remained unaffected in their numbers as well as their rates of proliferation and apoptosis. Oligodendrocyte development thus relies on the differential contribution of all three group E Sox proteins at various phases.

Related Organizations
Keywords

Male, Knockout, Sox10, Mice, Redundancy, Sry, Glia, Animals, Molecular Biology, Cell Proliferation, SOXE Transcription Factors, High Mobility Group Proteins, Cell Differentiation, SOX9 Transcription Factor, Cell Biology, Mice, Mutant Strains, DNA-Binding Proteins, Oligodendroglia, High-mobility-group, Spinal Cord, Oligodendrogenesis, Female, Sox9, Developmental Biology, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    92
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
92
Top 10%
Top 10%
Top 10%
hybrid